欢迎来到天天文库
浏览记录
ID:56679702
大小:126.00 KB
页数:3页
时间:2020-07-04
《高中数学 第二章 空间向量与立体几何 2.4 用向量讨论垂直与平行 (2)教案 北师大版选修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.4用向量讨论垂直与平行(2)【教学目标】1.能用向量语言描述线线、线面、面面的平行与垂直关系;2.能用向量方法证明空间线面位置关系的一些定理;3.能用向量方法判断空间线面垂直关系。【知识梳理】设空间两条直线的方向向量分别为,两个平面的法向量分别为,则由如下结论平行垂直与与与【典型例题】例1证明:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。(三垂线定理)已知:如图,OB是平面的斜线,O为斜足,,A为垂足,求证:例2证明:如果一条直线和平面内的两条相交直线垂直,那么这条直线垂直于这个平面。(直线与平
2、面垂直的判定定理)已知:,求证:例3在直三棱柱中,,,是得中点。求证:基础巩固1.如图,已知△ADB和△ADC都是以D为直角顶点的直角三角形,且AD=BD=CD,∠BAC=60°,E为AC的中点,那么以下向量为平面ACD的法向量的是( )A. B.C. D.2.已知a=(1,2,-y),b=(x,1,2),且(a+2b)∥(2a-b),则( )A.x=,y=1B.x=,y=-4C.x=2,y=-D.x=1,y=-13.若直线l1,l2的方向向量分别为a=(1,2,-2),b=(-2,3,2),( )A.l1∥l2B.l1⊥l2
3、C.l1,l2相交但不垂直D.l1,l2的关系不能确定4.已知A(1,0,0),B(0,1,0),C(0,0,1),则平面ABC的一个单位法向量是( )A.(,,-)B.(,-,)C.(-,,)D.(-,-,-)5.已知点P是平行四边形ABCD所在平面外一点,如果=(2,-1,-4),=(4,2,0),=(-1,2,-1).对于结论:①AP⊥AB;②AP⊥AD;③是平面ABCD的法向量;④∥.其中正确的是________________.6.如图,已知矩形ABCD,PA=AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满
4、足PQ⊥QD,则a的值等于________________.(6题)(7题)(8题)7.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.8.在正方体ABCD—A1B1C1D1中,棱DD1上是否存在点P,使得平面APC1平面ACC1?证明你的结论.9.如图,正四棱柱ABCD-A1B1C1D1中,底面边长为2,侧棱长为4,E、F分别是棱AB、BC的中点,EF∩BD=G.求证:平面B1EF⊥
5、平面BDD1B1.
此文档下载收益归作者所有