欢迎来到天天文库
浏览记录
ID:56677793
大小:298.00 KB
页数:9页
时间:2020-07-04
《高中数学 第一章 导数及其应用章末复习学案(含解析)新人教A版选修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第一章导数及其应用1.对于导数的定义,必须明确定义中包含的基本内容和Δx→0的方式,导数是函数的增量Δy与自变量的增量Δx的比的极限,即=.函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率.2.曲线的切线方程利用导数求曲线过点P的切线方程时应注意:(1)判断P点是否在曲线上;(2)如果曲线y=f(x)在P(x0,f(x0))处的切线平行于y轴(此时导数不存在),可得方程为x=x0;P点坐标适合切线方程,P点处的切线斜率为f′(x0).3.利用基本初等函数的求导公式和四则运算法则求导数,熟
2、记基本求导公式,熟练运用法则是关键,有时先化简再求导,会给解题带来方便.因此观察式子的特点,对式子进行适当的变形是优化解题过程的关键.4.判断函数的单调性(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中,只能在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间;(2)注意在某一区间内f′(x)>0(或f′(x)<0)是函数f(x)在该区间上为增(或减)函数的充分条件.5.利用导数研究函数的极值要注意(1)极值是一个局部概念,是仅对某一点的左右两侧领域而言的.(2)连续函数f(x)在其定义域上的极值点可能不止
3、一个,也可能没有极值点,函数的极大值与极小值没有必然的大小联系,函数的一个极小值也不一定比它的一个极大值小.(3)可导函数的极值点一定是导数为零的点,但函数的导数为零的点,不一定是该函数的极值点.因此导数为零的点仅是该点为极值点的必要条件,其充要条件是加上这点两侧的导数异号.6.求函数的最大值与最小值(1)函数的最大值与最小值:在闭区间[a,b]上连续的函数f(x),在[a,b]上必有最大值与最小值;但在开区间(a,b)内连续的函数f(x)不一定有最大值与最小值,例如:f(x)=x3,x∈(-1,1).(2)求函数最值的步骤一般地,求函数y=
4、f(x)在[a,b]上最大值与最小值的步骤如下:①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.7.应用导数解决实际问题,关键在于建立恰当的数学模型(函数关系),如果函数在区间内只有一个点x0,使f′(x0)=0,则f(x0)是函数的最值.题型一 应用导数解决与切线相关的问题根据导数的几何意义,导数就是相应切线的斜率,从而就可以应用导数解决一些与切线相关的问题.例1 (2013·福建)已知函数f(x)=x-alnx(a∈R).(1)当a=
5、2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.解 函数f(x)的定义域为(0,+∞),f′(x)=1-.(1)当a=2时,f(x)=x-2lnx,f′(x)=1-(x>0),∴f(1)=1,f′(1)=-1,∴y=f(x)在点A(1,f(1))处的切线方程为y-1=-(x-1),即x+y-2=0.(2)由f′(x)=1-=,x>0.①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a;∵x∈(0,a)时,f′(x)<0,x∈
6、(a,+∞)时,f′(x)>0∴f(x)在x=a处取得极小值,且极小值为f(a)=a-alna,无极大值.综上当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a-alna,无极大值.跟踪演练1 已知曲线C的方程是y=x3-3x2+2x.(1)求曲线在x=1处的切线方程;(2)若l2:y=kx,且直线l2与曲线C相切于点(x0,y0)(x0≠0),求直线l2的方程及切点坐标.解 (1)∵y′=3x2-6x+2,∴y′
7、x=1=3×1-6×1+2=-1.∴l1的斜率为-1,且过点(1,0).∴直线l1的方程为y=-(x
8、-1),即l1的方程为x+y-1=0.(2)直线l2过原点,则k=(x0≠0),由点(x0,y0)在曲线C上,得y0=x-3x+2x0,∴=x-3x0+2.∵y′=3x2-6x+2,∴k=3x-6x0+2.又k=,∴3x-6x0+2==x-3x0+2,整理得2x-3x0=0.∵x0≠0,∴x0=,此时y0=-,k=-,因此直线l2的方程为y=-x,切点坐标为.题型二 利用导数求函数的单调区间在区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在区间(a,b)内单调递增;在区间(a,b)内,如果f′(x)<0,那么函数y=f(x)在区间
9、(a,b)内单调递减.例2 已知函数f(x)=x-+a(2-lnx),a>0.讨论f(x)的单调性.解 由题知,f(x)的定义域是(0,+∞),f′(x)=1+-=
此文档下载收益归作者所有