资源描述:
《十年高考真题分类汇编(2010-2019) 数学 专题11直线与圆 试题精选及解析.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、十年高考真题分类汇编(2010—2019)数学专题11直线与圆一、选择题1.(2019·全国2·理T11文T12)设F为双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若
2、PQ
3、=
4、OF
5、,则C的离心率为( )A.2B.3C.2D.5【答案】A【解析】如图,设PQ与x轴交于点A,由对称性可知PQ⊥x轴.∵
6、PQ
7、=
8、OF
9、=c,∴
10、PA
11、=c2.∴PA为以OF为直径的圆的半径,A为圆心,∴
12、OA
13、=c2.∴Pc2,c2.又点P在圆x2+y2=
14、a2上,∴c24+c24=a2,即c22=a2,∴e2=c2a2=2,∴e=2,故选A.2.(2018·北京·理T7)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x-my-2=0的距离.当θ,m变化时,d的最大值为( ) A.1B.2C.3D.4【答案】C【解析】设P(x,y),则x=cosθ,y=sinθ,x2+y2=1.即点P在单位圆上,点P到直线x-my-2=0的距离可转化为圆心(0,0)到直线x-my-2=0的距离加上(或减去)半径,所以距离最大为d=1+
15、-2
16、1+m
17、2=1+21+m2.当m=0时,dmax=3.3.(2018·全国3·理T6文T8)直线x+y+2=0分别与x轴、y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是( )A.[2,6]B.[4,8]C.[2,32]D.[22,32]【答案】A【解析】设圆心到直线AB的距离d=
18、2+0+2
19、2=22.14点P到直线AB的距离为d'.易知d-r≤d'≤d+r,即2≤d'≤32.又AB=22,∴S△ABP=12·
20、AB
21、·d'=2d',∴2≤S△ABP≤6.4.(2016·山东·文T7)已知圆M
22、:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是22.则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( )A.内切B.相交C.外切D.相离【答案】B【解析】圆M的方程可化为x2+(y-a)2=a2,故其圆心为M(0,a),半径R=a.所以圆心到直线x+y=0的距离d=
23、0+a
24、12+12=22a.所以直线x+y=0被圆M所截弦长为2R2-d2=2a2-22a2=2a,由题意可得2a=22,故a=2.而
25、MN
26、=(1-0)2+(1-2)2=2,显然R-r<
27、MN
28、29、2016·全国2·理T4文T6)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )A.-43B.-34C.3D.2【答案】A【解析】圆的方程可化为(x-1)2+(y-4)2=4,圆心坐标为(1,4).所以d=
30、a+4-1
31、a2+1=1,解得a=-43,故选A.6.(2015·全国2·理T7)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则
32、MN
33、=( )A.26B.8C.46D.10【答案】C【解析】设圆的方程为x2+y2+Dx+Ey+F=0,将点A,B,
34、C代入,得D+3E+F+10=0,4D+2E+F+20=0,D-7E+F+50=0,解得D=-2,E=4,F=-20.则圆的方程为x2+y2-2x+4y-20=0.令x=0得y2+4y-20=0,设M(0,y1),N(0,y2),则y1,y2是方程y2+4y-20=0的两根,由根与系数的关系,得y1+y2=-4,y1y2=-20,故
35、MN
36、=
37、y1-y2
38、=(y1+y2)2-4y1y2=16+80=46.147.(2015·全国2·文T7)已知三点A(1,0),B(0,3),C(2,3),则△ABC外接圆的圆心到原点的距
39、离为( )A.53B.213C.253D.43【答案】B【解析】由题意知,△ABC外接圆的圆心是直线x=1与线段AB垂直平分线的交点为P,而线段AB垂直平分线的方程为y-32=33x-12,它与x=1联立得圆心P坐标为1,233,则
40、OP
41、=12+2332=213.8.(2015·北京·文T2)圆心为(1,1)且过原点的圆的方程是( )A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2【答案】D【解析】圆的半径r=2,标准方程为(x
42、-1)2+(y-1)2=2.9.(2015·广东·理T5)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是( )A.2x+y+5=0或2x+y-5=0B.2x+y+5=0或2x+y-5=0C.2x-y+5=0或2x-y-5=0D.2x-y+5=0或2x-y-5=0【答案】A【解析】设与直线2x+y+