资源描述:
《利用导数研究函数的单调性和极值.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、利用导数研究函数的单调性和极值1.(福建文)(本小题满分12分)已知函数且(I)试用含的代数式表示;(Ⅱ)求的单调区间;2.(2009江西文)(本小题满分12分)设函数.(1)对于任意实数,恒成立,求的最大值;(2)若方程有且仅有一个实根,求的取值范围.3.(陕西文)(本小题满分12分)已知函数求的单调区间;若在处取得极值,直线y=m与的图象有三个不同的交点,求m的取值范围。4.(天津文)(本小题满分14分)已知函数,其中.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,求的单调区间;5.【高考江苏18】若函
2、数在处取得极大值或极小值,则称为函数的极值点。已知是实数,1和是函数的两个极值点.(1)求和的值;(2)设函数的导函数,求的极值点;6.(2013年高考陕西卷(文))已知函数.(Ⅰ)求f(x)的反函数的图象上图象上点(1,0)处的切线方程;(Ⅱ)证明:曲线y=f(x)与曲线有唯一公共点.7.(2013年高考北京卷(文))已知函数.(Ⅰ)若曲线在点)处与直线相切,求与的值.(Ⅱ)若曲线与直线有两个不同的交点,求的取值范围.8.(福建卷(文))已知函数(,为自然对数的底数).(1)若曲线在点处的切线平行于轴,求的
3、值;(2)求函数的极值;1.(福建文)(本小题满分12分)已知函数且(I)试用含的代数式表示;(Ⅱ)求的单调区间;(I)依题意,得由得(Ⅱ)由(I)得(故令,则或①当时,当变化时,与的变化情况如下表:+—+单调递增单调递减单调递增由此得,函数的单调增区间为和,单调减区间为②由时,,此时,恒成立,且仅在处,故函数的单调区间为R③当时,,同理可得函数的单调增区间为和,单调减区间为综上:当时,函数的单调增区间为和,单调减区间为;当时,函数的单调增区间为R;当时,函数的单调增区间为和,单调减区间为2.(2009江西文
4、)(本小题满分12分)设函数.(1)对于任意实数,恒成立,求的最大值;(2)若方程有且仅有一个实根,求的取值范围.解:(1),因为,,即恒成立,所以,得,即的最大值为(2)因为当时,;当时,;当时,;所以当时,取极大值;当时,取极小值;故当或时,方程仅有一个实根.解得或.3.(2009陕西文)(本小题满分12分)已知函数求的单调区间;若在处取得极值,直线y=m与的图象有三个不同的交点,求m的取值范围。解析:(1)当时,对,有当时,的单调增区间为当时,由解得或;由解得,当时,的单调增区间为;的单调减区间为。(2
5、)因为在处取得极大值,所以所以由解得。由(1)中的单调性可知,在处取得极大值,在处取得极小值。因为直线与函数的图象有三个不同的交点,又,,结合的单调性可知,的取值范围是。(11天津文)4.(本小题满分14分)已知函数,其中.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,求的单调区间;(Ⅰ)解:当时,所以曲线在点处的切线方程为(Ⅱ)解:,令,解得因为,以下分两种情况讨论:(1)若变化时,的变化情况如下表:+-+所以,的单调递增区间是的单调递减区间是。(2)若,当变化时,的变化情况如下表:+-+所以,的单调递增
6、区间是的单调递减区间是5.【2012高考江苏18】(16分)若函数在处取得极大值或极小值,则称为函数的极值点。已知是实数,1和是函数的两个极值点.(1)求和的值;(2)设函数的导函数,求的极值点;解:(1)由,得。∵1和是函数的两个极值点,∴,,解得。(2)∵由(1)得,,∴,解得。∵当时,;当时,,∴是的极值点。∵当或时,,∴不是的极值点。∴的极值点是-2。(2013年高考陕西卷(文))6.已知函数.(Ⅰ)求f(x)的反函数的图象上图象上点(1,0)处的切线方程;(Ⅱ)证明:曲线y=f(x)与曲线有唯一公共
7、点.解:(Ⅰ)f(x)的反函数,则y=g(x)过点(1,0)的切线斜率k=..过点(1,0)的切线方程为:y=x+1(Ⅱ)证明曲线y=f(x)与曲线有唯一公共点,过程如下.因此,所以,曲线y=f(x)与曲线只有唯一公共点(0,1).7.(2013年高考北京卷(文))已知函数.(Ⅰ)若曲线在点)处与直线相切,求与的值.(Ⅱ)若曲线与直线有两个不同的交点,求的取值范围.解:由,得.(I)因为曲线在点处与直线相切,所以,解得,.(II)令,得.与的情况如下:所以函数在区间上单调递减,在区间上单调递增,是的最小值.当
8、时,曲线与直线最多只有一个交点;当时,>,,所以存在,,使得.由于函数在区间和上均单调,所以当时曲线与直线有且只有两个不同交点.综上可知,如果曲线与直线有且只有两个不同交点,那么的取值范围是.2013年高考福建卷(文))8.已知函数(,为自然对数的底数).(1)若曲线在点处的切线平行于轴,求的值;(2)求函数的极值;解:(Ⅰ)由,得.又曲线在点处的切线平行于轴,得,即,解得.(Ⅱ),①当时,,为上的