九年级数学下册 第一章 直角三角形的边角关系 课题 解直角三角形学案 (新版)北师大版.doc

九年级数学下册 第一章 直角三角形的边角关系 课题 解直角三角形学案 (新版)北师大版.doc

ID:56412111

大小:135.50 KB

页数:2页

时间:2020-06-23

九年级数学下册 第一章 直角三角形的边角关系 课题 解直角三角形学案 (新版)北师大版.doc_第1页
九年级数学下册 第一章 直角三角形的边角关系 课题 解直角三角形学案 (新版)北师大版.doc_第2页
资源描述:

《九年级数学下册 第一章 直角三角形的边角关系 课题 解直角三角形学案 (新版)北师大版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课题:解直角三角形【学习目标】1.理解解直角三角形的定义,能通过已知条件正确选用关系式解直角三角形.2.熟练应用勾股定理,直角三角形两锐角关系,边角关系解直角三角形,培养分析能力和计算能力.【学习重点】学会运用已知条件解直角三角形.【学习难点】根据条件选择适当的方法解直角三角形.情景导入 生成问题旧知回顾:1.直角三角形三边之间有什么关系?答:勾股定理:a2+b2=c2.2.直角三角形两锐角之间有何关系?答:互余:∠A+∠B=90°.3.直角三角形边与角之间有何关系?答:锐角三角函数sinA=,cosA=,tanA=.自学互研 生成能力阅读教

2、材P16~P17,完成下面的内容:1.什么叫解直角三角形?答:由直角三角形中已知的元素,求出所有未知元素的过程,叫做解直角三角形.2.解直角三角形一般有哪些类型?答:①已知两边解直角三角形;②已知一边和一锐角解直角三角形.范例1:在Rt△ABC中,∠C=90°.(1)若c=6,a=6,则b=6,∠B=45°,∠A=45°;(2)若a=3,b=,则∠A=60°,∠B=30°,c=2.仿例1:(连云港中考)在Rt△ABC中,∠C=90°,BC=,AC=,则∠A的度数为( D )A.90°     B.60°     C.45°     D.30°

3、仿例2:如图,在四边形ABCD中,E,F分别是AB,AD的中点,若EF=2,BC=5,CD=3,则tanC等于( B )A.B.C.D.仿例3:在Rt△ABC中,∠C=90°,BC=12,AC=4,解这个直角三角形.解:∵tanA===,∴∠A=60°,∠B=30°,AB=2AC=8.阅读教材P16~P17,完成下面的内容:范例2:如图,在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为( A )A.4     B.2     C.     D.仿例1:如图,在△ABC中,∠C=90°,∠B=60°,D是AC上一点,DE⊥AB

4、于点E,且CD=2,DE=1,则BC的长为( B )A.2B.C.2D.4  ,(仿例1题图))     ,(仿例2题图))仿例2:如图,在△ABC中,cosB=,sinC=,AC=5,则△ABC的面积是( A )A.B.12C.14D.21仿例3:等边三角形的高为2,则它的边长是( C )A.4B.C.D.2交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上

5、,通过交流“生成新知”.知识模块一 已知两边解直角三角形知识模块二 已知一边和一锐角解直角三角形检测反馈 达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思 查漏补缺1.收获:__________________________________________________________________2.存在困惑:___________________________________________________________________

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。