高二数学直线与平面垂直的判定与性质.doc

高二数学直线与平面垂直的判定与性质.doc

ID:56397848

大小:1.43 MB

页数:33页

时间:2020-06-23

高二数学直线与平面垂直的判定与性质.doc_第1页
高二数学直线与平面垂直的判定与性质.doc_第2页
高二数学直线与平面垂直的判定与性质.doc_第3页
高二数学直线与平面垂直的判定与性质.doc_第4页
高二数学直线与平面垂直的判定与性质.doc_第5页
资源描述:

《高二数学直线与平面垂直的判定与性质.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课题:9.4直线和平面垂直(共4课时)第一课时:直线和平面垂直的判定定理第二课时:直线和平面垂直的性质定理第三课时:直线与平面所成角第四课时:三垂线定理1、直线和平面垂直的定义教学目的:(1)能准确叙述直线和平面垂直的定义,并能画图予以表示;(2)能准确说出直线与平面垂直的判定定理的条件和结论,并用图形、符号语言予以表示,会用判定定理解决有关问题;(3)通过判定定理的证明,初步掌握将空间问题转化维平面问题的方法。内容分析:1、直线与平面垂直是直线与直线垂直的延伸,是今后研究三垂线定理、平面与平面垂直以及有关距离、空

2、间角、多面体、旋转体的基础。本节的学习可完善知识结构,并对进一步培养学生观察、发现的能力和空间想象能力,起着十分重要的作用。1、本课的重点是:直线与平面垂直的定义及判定定理。由于本节的判定定理的证明有一定的难度:定理的论证层次多,构图复杂,辅助线多,运用平面几何知识多,所以本节的难点是判定定理的证明。突破难点的方法是充分运用实物模型演示,以具体形象支持逻辑思维。判定定理的证明深刻地体现了空间问题向平面问题的转化。学生对定理的理解要突出“两条”、“相交”、“垂直”这三个关键词。2、例1安排在判定定理之前讲述是恰当的,

3、既是对定义的应用,又是对判定定理证明的铺垫。例2的设置是突出定义和判定定理的重要作用,再次说明直线与平面垂直和直线与直线垂直是可以互相转化的。2006高考题:1、(2006重庆)若是平面外一点,则下列命题正确的是(A)过只能作一条直线与平面相交(B)过可作无数条直线与平面垂直(C)过只能作一条直线与平面平行(D)过可作无数条直线与平面平行2、(2006上海理)如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是.

4、3、(2006广东)给出以下四个命题:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。如果两条直线都平行于一个平面,那么这两条直线互相平行。如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。其中真命题的个数是A.4B.3C.2D.1问1:如果把直立的人当直线,与地面上所有直线有什么关系?问2:如果把直立的人当直线,直立的人与地面上有什么关系?问3:如何定义直线与平面垂直?如何用符号表示直线与平

5、面垂直?定义:如果一条直线和一个平面相交,并且和这个平面内的任意一条直线都垂直,我们就说这条直线和这个平面互相垂直。其中直线叫做平面的垂线,平面叫做直线的垂面,交点叫做垂足。直线与平面垂直简称线面垂直,记作:a⊥α。问4:如何画直线与平面垂直?画法:画直线和平面垂直时,通常要把直线画成和表示平面的平行四边形的一边垂直问5:直线与平面垂直定义中“任何”表示所有吗?“任何”改为“无数条”可以吗?改为“一条”、“两条”呢?问6:a⊥等价于对任意的直线Ì,都有a⊥吗?利用定义,我们得到了判定线面垂直的最基本方法,同时也得到

6、了线面垂直的最基本的性质2、直线与平面垂直的判定定理2006高考题:1、(2006福建)如图,四面体ABCD中,O、E分别是BD、BC的中点,(I)求证:平面BCD;(II)求异面直线AB与CD所成角的大小;(III)求点E到平面ACD的距离。2、(2006重庆)如图,在四棱锥P-ABCD中,PA底面ABCD,DAB为直角,AB‖CD,AD=CD=24B,E、F分别为PC、CD的中点.(Ⅰ)试证:CD平面BEF;(Ⅱ)设PA=k·AB,且二面角E-BD-C的平面角大于,求k的取值范围.3、(2006浙江)如图,在四

7、棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.(Ⅰ)求证:PB⊥DM;(Ⅱ)求BD与平面ADMN所成的角。(Ⅱ)求CD与平面ADMN所成的角4、(2006江苏)   在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△AEF沿EF折起到的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2)(Ⅰ)求证:A1E⊥平面BEP;(Ⅱ)求直线

8、A1E与平面A1BP所成角的大小;(Ⅲ)求二面角B-A1P-F的大小(用反三角函数表示)图1图25、(2006北京理)如图,在底面为平行四边形的四棱锥中,,平面,且,点是的中点.(Ⅰ)求证:;直线与平面垂直的判定定理的引入:问1:若a∥b,a⊥c,则b⊥c吗?将c改为平面,结论还成立吗?即:若a∥b,a⊥,则b⊥吗?例1求证:如果两条平行直线中的一条垂直于一

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。