欢迎来到天天文库
浏览记录
ID:56388469
大小:21.50 KB
页数:2页
时间:2020-06-22
《积化和差,和差化积,倍角公式,半角公式.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.积化和差公式证明方法:用和(差)角公式将右边展开即得公式.积化和差公式记忆口诀积化和差角加减,二分之一排前边正余积化正弦和,余正积化正弦差余弦积化余弦和,正弦积化负余差2.和差化积公式sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]【注意右式前的负号】和差化积公式记忆口诀和差化积2排前,半角加减放右边正弦和化正余积,正弦差
2、化余正积余弦和化余弦积,余弦差化负正积。 以上四组公式可以由积化和差公式推导得到 证明过程 sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程 因为 sin(α+β)=sinαcosβ+cosαsinβ, sin(α-β)=sinαcosβ-cosαsinβ, 将以上两式的左右两边分别相加,得 sin(α+β)+sin(α-β)=2sinαcosβ, 设α+β=θ,α-β=φ 那么 α=(θ+φ)/2,β=(θ-φ)/2 把α,β的值代入,即得 sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)
3、/2] 正切的和差化积 tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明) cotα±cotβ=sin(β±α)/(sinα·sinβ) tanα+cotβ=cos(α-β)/(cosα·sinβ) tanα-cotβ=-cos(α+β)/(cosα·sinβ)【注意右式前的负号】 证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ =(sinα·cosβ±cosα·sinβ)/(cosα·cosβ) =sin(α±β)/(cosα·cosβ)=右边∴等式成立3.半角公式sin(A/2)=√((1-cosA)/
4、2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
此文档下载收益归作者所有