圆的有关概念 (2).doc

圆的有关概念 (2).doc

ID:55844266

大小:179.79 KB

页数:4页

时间:2020-06-09

圆的有关概念 (2).doc_第1页
圆的有关概念 (2).doc_第2页
圆的有关概念 (2).doc_第3页
圆的有关概念 (2).doc_第4页
资源描述:

《圆的有关概念 (2).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、圆的有关概念【课时目标】1.理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等孤的概念.2.探索并掌握垂径定理及其推论.3.探索圆周角与圆心角及其所对弧的关系,了解并证明圆周角定理及其推论.4.知道三角形的外心,并能画任意三角形的外接圆.【知识梳理】x_k_b_11.圆的基本概念:在同一平面内,线段OA绕它固定的一个端点_______形成的图形叫做圆,_______叫做圆心,_______叫做半径.圆上任意两点间的_______叫做圆弧;在同圆或等圆中,能够_______的弧叫做等弧.2.圆的有关性质:(1)对称性:圆是中心对称图形,_______是它的对称中心;圆也是轴对称图形,____

2、___都是它的对称轴.(2)圆心角、弧、弦之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别_______.(3)垂径定理:垂直于弦的直径_______弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径________于弦,且平分这条弦所对的两条弧.3.圆心角和圆周角:(1)圆心角:顶点在_______的角叫做圆心角;圆心角的度数_______它所对的弧的度数.圆周角:顶点在圆上,两边都与圆_______的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角_______,都等于这条弧所对的圆心角的_____

3、__.推论:半圆(或直径)所对的圆周角是_______,90°的圆周角所对的弦是________.4.确定圆的条件:(1)不在_______的三个点可以确定一个圆.(2)三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心叫做________.5.圆内接四边形:圆内接四边形的对角_______.www.xkb1.com【考点例析】考点一 垂径定理及其推论xkb1例1如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8B.10C.16D.20提示 连接OC,即可证得△OEC是直角三角形,根据垂径定理即可求得OC,进而求出AB的长.考点二 

4、圆周角定理及其推论xkb1.com例2如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.35°B.45°C.55°D.75°新$课$标$第$一$网提示 连接AD,由“AB是⊙O的直径”可知∠ADB=90°.因为∠ABD=55°,所以∠A=90°-55°=35°.又因为∠A与∠BCD是所对的圆周角,所以∠BCD=∠A.例3如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=________.提示先由平行四边形的性质得到∠ABC=∠AOC,由圆周角定理得∠ADC=∠AOC,再根据圆内接四边形的对角互补及平行四边

5、形的性质求出四边形OABC各内角的度数,最后把∠OAD+∠OCD看作整体来求解.考点三圆的性质与其他知识的综合运用例4 如图,MN为⊙O的直径,A、B是⊙O上的两点,过A作AC⊥MN于点C,过B作BD⊥MN于点D,P为DC上的任意一点,若MN=20,AC=8,BD=6,则PA+PB的最小值是________.提示 先由MN=20求出⊙O的半径,再连接OA、OB,由勾股定理得出OD、CC的长,作点B关于MN的对称点B',连接AB',则AB'即为PA+PB的最小值,B'D=BD=6.过点B'作AC的垂线,交AC的延长线于点E,在Rt△AB'E中利用勾股定理即可求出AB'的值.例5(2012.凉

6、山)如图,直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,连接PC并延长PC交y轴于点D(0,3).(1)求证:△POD≌△ABO;(2)若直线l:y=kx+b经过圆心P和点D,求直线l的解析式.提示(1)要证明△POD≌△ABO,已有AP=PO这一条件,又由OA为⊙P的直径可知∠ABO=∠AOD=90°,现在只需再证一组角相等即可.连接PB,由点B、C把三等分,可得∠1=∠2=60°,进而得∠3=∠2=60°,从而全等得证;(2)用待定系数法确定直线l的解析式,只需得到点P和点D的坐标.【反馈练习】1.如图,CD是⊙O的直径,弦AB⊥CD于E,∠BCD=25°,则下列结论错误的是

7、()A.AE=BEB.OE=DEC.∠AOD=50°D.D是的中点  2.如图,在⊙O中,弦AB∥CD.若∠ABC=40°,则∠BOD的度数为()A.20°B.40°C.50°D.80°3.如图,⊙C过原点,且与两坐标轴分别交于点A、B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6B.5C.3D.34.如图,∠PAC=30°,在射线AC上顺次截取AD=3cm,DB=10cm

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。