立体几何中的向量方法课件 .ppt

ID:55824405

大小:1.48 MB

页数:43页

时间:2020-06-09

立体几何中的向量方法课件 .ppt_第1页
立体几何中的向量方法课件 .ppt_第2页
立体几何中的向量方法课件 .ppt_第3页
立体几何中的向量方法课件 .ppt_第4页
立体几何中的向量方法课件 .ppt_第5页
资源描述:

《立体几何中的向量方法课件 .ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.2.1立体几何中的向量方法(一)研究从今天开始,我们将进一步来体会向量这一工具在立体几何中的应用.共线向量定理:复习:共面向量定理:思考1:1、如何确定一个点在空间的位置?2、在空间中给一个定点A和一个定方向(向量),能确定一条直线在空间的位置吗?3、给一个定点和两个定方向(向量),能确定一个平面在空间的位置吗?4、给一个定点和一个定方向(向量),能确定一个平面在空间的位置吗?OP一、点的位置向量ABP二、直线的向量参数方程此方程称为直线的向量参数方程。这样点A和向量不仅可以确定直线l的位置,还可以具体写出l上的任意一点。PO除此之外,还可以

2、用垂直于平面的直线的方向向量(这个平面的法向量)表示空间中平面的位置.这样,点O与向量不仅可以确定平面的位置,还可以具体表示出内的任意一点。三、平面的法向量A平面的法向量:如果表示向量的有向线段所在直线垂直于平面,则称这个向量垂直于平面,记作⊥,如果⊥,那么向量叫做平面的法向量.给定一点A和一个向量,那么过点A,以向量为法向量的平面是完全确定的.几点注意:1.法向量一定是非零向量;2.一个平面的所有法向量都互相平行;3.向量是平面的法向量,向量是与平面平行或在平面内,则有l因为方向向量与法向量可以确定直线和平面的位置,所以我们应该可以利用直线的方

3、向向量与平面的法向量表示空间直线、平面间的平行、垂直、夹角等位置关系.你能用直线的方向向量表示空间两直线平行、垂直的位置关系以及它们之间的夹角吗?你能用平面的法向量表示空间两平面平行、垂直的位置关系以及它们二面角的大小吗?思考2:四、平行关系:五、垂直关系:AAC学生解答展示证明:(1)建立如图所示的坐标系,则A(2,0,0),C(0,2,0),C1(0,2,2),F(0,0,1),E(2,2,1)平面ADE,平面B1GF的一个法向量分别是返回

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《立体几何中的向量方法课件 .ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.2.1立体几何中的向量方法(一)研究从今天开始,我们将进一步来体会向量这一工具在立体几何中的应用.共线向量定理:复习:共面向量定理:思考1:1、如何确定一个点在空间的位置?2、在空间中给一个定点A和一个定方向(向量),能确定一条直线在空间的位置吗?3、给一个定点和两个定方向(向量),能确定一个平面在空间的位置吗?4、给一个定点和一个定方向(向量),能确定一个平面在空间的位置吗?OP一、点的位置向量ABP二、直线的向量参数方程此方程称为直线的向量参数方程。这样点A和向量不仅可以确定直线l的位置,还可以具体写出l上的任意一点。PO除此之外,还可以

2、用垂直于平面的直线的方向向量(这个平面的法向量)表示空间中平面的位置.这样,点O与向量不仅可以确定平面的位置,还可以具体表示出内的任意一点。三、平面的法向量A平面的法向量:如果表示向量的有向线段所在直线垂直于平面,则称这个向量垂直于平面,记作⊥,如果⊥,那么向量叫做平面的法向量.给定一点A和一个向量,那么过点A,以向量为法向量的平面是完全确定的.几点注意:1.法向量一定是非零向量;2.一个平面的所有法向量都互相平行;3.向量是平面的法向量,向量是与平面平行或在平面内,则有l因为方向向量与法向量可以确定直线和平面的位置,所以我们应该可以利用直线的方

3、向向量与平面的法向量表示空间直线、平面间的平行、垂直、夹角等位置关系.你能用直线的方向向量表示空间两直线平行、垂直的位置关系以及它们之间的夹角吗?你能用平面的法向量表示空间两平面平行、垂直的位置关系以及它们二面角的大小吗?思考2:四、平行关系:五、垂直关系:AAC学生解答展示证明:(1)建立如图所示的坐标系,则A(2,0,0),C(0,2,0),C1(0,2,2),F(0,0,1),E(2,2,1)平面ADE,平面B1GF的一个法向量分别是返回

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭