欢迎来到天天文库
浏览记录
ID:55604046
大小:418.00 KB
页数:79页
时间:2020-05-20
《概率论基础(管理统计学与SPSS160应用课件).ppt》由会员上传分享,免费在线阅读,更多相关内容在PPT专区-天天文库。
1、管理统计学2010年1概率论基础1.1事件与概率1.2概率的基本性质1.3条件概率与事件独立性1.4随机变量及其分布1.1事件与概率自然界和人类社会生产实践中的两类现象确定性现象:具有确定结果的现象不确定性现象/随机现象:在基本条件不变的情况下,一系列试验或观察会得到不同的结果,并且在每次试验或观察之前不能预知会出现哪种结果概率论研究的对象——随机现象例1.1生活中的随机现象生活中随机现象的例子抛掷一颗骰子,出现的点数一天内进入某超市的顾客数某一生产线生产出的灯泡的寿命某批产品的不合格率1.1.1随机试验与随机事件随机试验:满足以下三个特点的试验试验可以在相同的条件下重复进行试验有多种可
2、能的结果,并且事先可以明确所有可能出现的结果试验完成之前不能预知会出现哪一个的结果样本空间():一个随机试验的所有可能结果的集合样本点():试验的每一个可能结果例1.2随机现象的样本空间试列出例1.1中随机现象的样本空间掷一颗骰子的样本空间:Ω1={ω1,ω2,…,ω6},其中ωi表示出现i点,i=1,2,…,6。也即掷一颗骰子的样本空间为:Ω1={1,2,…,6}一天内进入某超市顾客数的样本空间:Ω2={0,1,2,…},其中0表示一天内无人光顾某生产线生产出灯泡的寿命的样本空间:Ω3={t
3、t≥0}产品的不合格率一定是介于0与1之间的一个实数,因此其样本空间:Ω4={y
4、0≤y≤
5、1}随机事件随机事件/事件(A,B,C…):样本空间的某个子集事件A发生:当且仅当事件A所包含的某一样本点出现随机事件的几个概念基本事件:仅包含一个样本点的随机事件例如,掷一颗均匀的骰子,事件B“掷出2点”复合事件:包含多个样本点的随机事件例如,掷一颗均匀的骰子,事件C“出现偶数点”必然事件():包含全部样本点的随机事件例如,掷一颗均匀的骰子,事件D“点数小于7”不可能事件(Ø):不包含任何样本点的随机事件例如,掷一颗均匀的骰子,事件E“点数大于6”1.1.2事件的关系及运算文氏图展示在不同事物群组(集合)之间的数学或逻辑联系用一个长方形表示样本空间Ω,用其中的一个圆或其他图形表示随
6、机事件A(1)事件之间的关系(待续)事件的包含A包含于B//事件A发生必然导致事件B发生A包含于B事件之间的关系(续)事件的相等A与B相等/A=B事件A发生必然导致事件B发生,同时事件B发生必然导致事件A发生事件的互不相容A与B互不相容事件A与事件B不可能同时发生A=BA与B互不相容(2)事件的运算(待续)事件的并A与B的并/A∪B属于事件A或B的所有样本点构成的集合事件的交A与B的交/A∩B/AB同时属于事件A和B的所有样本点构成的集合A∪BA∩B事件的运算(续)事件的差A与B的差/A-B属于事件A、不属于事件B的所有样本点构成的集合事件的对立(逆)A的对立(逆)/样本空
7、间中不属于事件A的所有样本点构成的集合A-B例1.3产品抽样检查已知一批外形无差别的产品中有3件次品,现随机地从这批产品中依次抽取3件,分别以A、B、C代表第一次、第二次、第三次抽到次品试表示①三次都抽到次品②只有第一次抽到次品③三次都没有抽到次品④至少抽到一件次品⑤最多抽到一件次品⑥最多抽到两件次品解:①三次都抽到次品:②只有第一次抽到次品:③三次都没有抽到次品:④至少抽到一件次品:⑤最多抽到一件次品,即A,B,C中只有一个发生或A,B,C全不发生:⑥最多抽到两件次品,即是A,B,C全发生的对立事件:(3)事件运算的性质事件运算遵循的法则交换率:,结合率:,分配率:对偶率(德莫根公式)
8、:1.1.3事件的概率概率:随机事件发生的可能性的量度常用P(A)表示随机事件A发生的可能性大小(1)概率的统计定义(待续)频率:FN(A)=n/N,其中n为事件A发生的次数,N为试验总次数频率的性质非负性:FN(A)≥0规范性:FN(Ω)=1可加性:若A、B互不相容,则FN(A∪B)=FN(A)+FN(B)概率的统计定义(续)频率稳定性:在相同条件下进行的多次重复试验,随着试验重复次数N的增加,随机事件A的频率FN(A)会在某一固定的常数a附近摆动,这个固定的常数a就是我们所说的概率试验者抛硬币次数出现正面次数出现正面频率德摩根204810610.5181蒲丰404020480.506
9、9费勒1000049790.4979皮尔逊1200060190.5016皮尔逊24000120120.5005历史上抛硬币试验的若干结果(2)概率的古典定义古典概型:具有以下两个基本特点的概率模型试验具有有限个可能出现的结果试验的每个基本事件出现的可能性都是相等的古典概型中基本事件ω的概率(假定样本空间={ω1,ω2,…,ωn})古典概型中随机事件A的概率其中,事件A包含样本点又称为A的“有利场合”例1.4摸球模型已知袋中有5个白
此文档下载收益归作者所有