欢迎来到天天文库
浏览记录
ID:53770363
大小:581.00 KB
页数:18页
时间:2020-04-26
《二面角的救法.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二面角的定义学校:徐水职教中心制作人:郄会宗日期:2010年10月15日复习回顾1.在平面几何中"角"是怎样定义的?从一点出发的两条射线所组成的图形叫做角。或:一条射线绕其端点旋转而成的图形叫做角。2.在立体几何中,"异面直线所成的角"是怎样定义的?直线a、b是异面直线,经过空间任意一点O,分别引直线a'//a,b'//b,我们把相交直线a'和b'所成的锐角(或直角)叫做异面直线所成的角。3.在立体几何中,"直线和平面所成的角"是怎样定义的?平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角。异面直线所成的角、直线和平面所成的角
2、与有什么共同的特征?它们的共同特征都是将三维空间的角转化为二维空间的角,即平面角。拦洪坝水平面一个平面内的一条直线把这个平面分成两个部分,其中的每一部分都叫做半平面。一条直线上的一个点把这条直线分成两个部分,其中的每一部分都叫做射线。OBA从一条直线出发的两个半平面所组成的图形叫做二面角。这条直线叫做二面角的棱。这两个半平面叫做二面角的面。平面角由射线--点--射线构成。二面角由半平面--线--半平面构成。lABPQ二面角的表示l二面角-l-二面角C-AB-DABCD二面角的画法CEFDAB角BAO边边顶点从一点出发的两条射线所组成的图形叫
3、做角。定义构成边—点—边(顶点)表示法∠AOB二面角AB面面棱a从一条直线出发的两个半平面所组成的图形叫做二面角。面—直线—面(棱)二面角—l—或二面角—AB—图形以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。平面角是直角的二面角叫做直二面角.二面角的度量l二面角的平面角的三个特征:1.点在棱上2.线在面内3.与棱垂直二面角的大小的范围:l二面角的平面角的作法:1、定义法3、垂面法2、三垂线定理法练习:指出下列各图中的二面角的平面角:BACDA’AB’C’CD’DB二面角B-
4、-B’C--AADBCl二面角--l--OEOO二面角A--BC--DDAOD例1已知锐二面角-l-,A为面内一点,A到的距离为2,到l的距离为4,求二面角-l-的大小。解:过A作AO⊥于O,过O作OD⊥l于D,连AD则由三垂线定理得AD⊥l∴AO=2,AD=4∵AO为A到的距离,AD为A到l的距离∴∠ADO就是二面角-l-的平面角∵sin∠ADO=∴∠ADO=60°∴二面角-l-的大小为60°在Rt△ADO中,AOAD①②③l二面角的计算:1、找到或作出二面角的平面角2、证明1中的角就是所求的角3、计算出此角的大小
5、一“作”二“证”三“计算”河堤斜面例2练习1。课本35页相交平面问题2。课本36页练习题小结一、二面角的定义二、二面角的表示方法三、二面角的平面角四、二面角的平面角的作法五、二面角的计算练习如图,已知A、B是120的二面角—l—棱l上的两点,线段AC,BD分别在面,内,且AC⊥l,BD⊥l,AC=2,BD=1,AB=3,求线段CD的长。ADBClO∠OAC=120AO=BD=1,AC=2四边形ABDO为矩形,DO=AB=3练习如图,已知A、B是120的二面角—l—棱l上的两点,线段AC,BD分别在面,内,且AC⊥l,BD⊥l,
6、AC=2,BD=1,AB=3,求线段CD的长。ADBCl∵BD⊥l∴AO∥BD,∴四边形ABDO为矩形,∴DO∥l,AO=BD∵AC⊥l,AO⊥l,∴l⊥平面CAO∴AO⊥l∴CO⊥DOO在Rt△COD中,DO=AB=3E解:在平面内,过A作AO⊥l,使AO=BD,连结CO、DO,则∠OAC就是二面角—l—的平面角,即∠OAC=120,∵BD=1∴AO=1,在△OAC中,AC=2,∴
此文档下载收益归作者所有