欢迎来到天天文库
浏览记录
ID:53765895
大小:223.04 KB
页数:3页
时间:2020-04-25
《人工神经网络法优化醋莪术挥发油的提取与包合工艺-论文.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、害专204,29(3):24s250人工神经网络法优化醋莪术挥发油的提取与包合工艺聂英军,傅超美,李莹,胡慧玲,廖婉,王程玉林,严鑫,甘彦雄(1.成都中医药大学药学院中药资源系统研究与开发利用省部共建国家重点实验室培育基地,四川成都611137;2.成都中医药大学针炙推拿学院,四川成都610072)摘要:目的优化醋莪术挥发油的提取与包合工艺。方法采用水蒸气蒸馏法提取醋莪术挥发油,以浸泡时间、加水量、提取时间为主要影响因素,以挥发油得率为评价指标,正交试验筛选挥发油的提取工艺;采用饱和水溶液法包合挥发油,以13环糊精与挥发油的加入比例、包合时间及包
2、合温度为主要影响因素,以挥发油包合率和包合物得率为评价指标,进行正交试验设计,筛选挥发油包合工艺。采用人工神经网络法,优化提取与包合的参数。结果提取与包合工艺条件分别为:取醋莪术饮片100g,加8倍量水,浸泡1h,水蒸气蒸馏提取6h,即得挥发油;取挥发油1mL,8环糊精与挥发油加入比为8:1,包合温度50℃,包合1h,即得挥发油包合物。结论优化工艺能显著提高原药材中挥发油的利用率,稳定可行,重复性较好。关键词:醋莪术;配方颗粒;挥发油;B一环糊精包合;人工神经网络法中图分类号:R94文献标志码:A文章编号:1006—0103(2014)03—02
3、48—03DoI:10.13375/j.cnki.wcjps.2014.03.006OptimizetheextractionandinclusionprocessofvinegarzedoaryturmericvolatileoilbyArtificialneuralnetworkNIEYing—jHB,FUChao—mei,LIYing,HUHui—ling,LIAOWan,WANGCheng—yuling,YANXin,GANYan—xiong(1.CollegeofPharmacy,ChengduUniversityofTCM,State
4、KeyLaboratoryandBreedingBaseofChineseMedicineResourcesSystemonResearchandDevelopmentandUtilizationofM0ZandMinistryConstruction,Chengdu,Sichuan,611137PR.China;2.InstituteofAcupunctureandMassage,ChengduUniversityofTCM,Chengdu,Sichuan,610072P.R.China)Abstract:OBJECTIVETooptimize
5、thevolatileoilextractionandclathrationprocessofvinegarpreparedrhizomazedoariae.METHODSThevolatileoilwasextractedbysteamdistillation,orthogonalexperimentwasadoptedtoscreenthemethodsofvinegarpreparedrhizomazedoariaevolatileoilextractionprocess.Theimmersetime,thevolumeofwater.ex
6、tractiontimewasusedasthemaininfluencefactor,andtheessentialoilyieldasevaluationindicatortoscreenthevolatileoilextractionmethods,saturatedwatersolutionmethodwasadoptedtoclathratethevolatileoil.ThevolumeofB—cyclodextrinandvolatileoil,clathrationtime,clathrationtemperaturewasuse
7、dasmaininfluencefactor,andtheoilbearingratioandinclusionratiowasusedasevaluationindicatorintheorthogonalexperi—menttoscreenthevolatileoilclathrationmethods.Analysismethodofartificialneuralnetworkwasselectedtooptimizethepanametersofextractionandclathrationprocess.RESULTSAftert
8、heoptimizeofartificialneuralnetworkanalysis,thesuitableextractionand
此文档下载收益归作者所有