欢迎来到天天文库
浏览记录
ID:53275587
大小:269.00 KB
页数:16页
时间:2020-04-02
《2017-2018高考三角函数大题.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、2017-2018高考三角函数大题 一.解答题(共14小题)2.(2018•新课标Ⅰ)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.3.(2018•北京)在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.4.(2018•北京)已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.第16页(共16页)5.(2018
2、•上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.6.(2018•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.7.(2017•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a
3、=3,求△ABC的周长.第16页(共16页)8.(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.9.(2017•新课标Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2.(1)求c;(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.10.(2017•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6
4、,sinB=.(Ⅰ)求b和sinA的值;(Ⅱ)求sin(2A+)的值.第16页(共16页)11.(2017•北京)在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.12.(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.13.(2017•浙江)已知函数f(x)=sin2x﹣cos2x﹣2sinxcosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x
5、)的最小正周期及单调递增区间.14.(2017•上海)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π).(1)求f(x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求△ABC的面积.第16页(共16页) 第16页(共16页)2017-2018高考三角函数大题参考答案与试题解析 一.解答题(共14小题)1.(2018•新课标Ⅰ)已知函数f(x)=﹣x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2
6、.【解答】解:(1)函数的定义域为(0,+∞),函数的导数f′(x)=﹣﹣1+=﹣,设g(x)=x2﹣ax+1,当a≤0时,g(x)>0恒成立,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,当a>0时,判别式△=a2﹣4,①当0<a≤2时,△≤0,即g(x)>0,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,②当a>2时,x,f′(x),f(x)的变化如下表:x(0,)(,)(,+∞)f′(x)﹣0+0﹣f(x)递减递增递减综上当a≤2时,f(x)在(0,+∞)上
7、是减函数,当a>2时,在(0,),和(,+∞)上是减函数,则(,)上是增函数.第16页(共16页)(2)由(1)知a>2,0<x1<1<x2,x1x2=1,则f(x1)﹣f(x2)=(x2﹣x1)(1+)+a(lnx1﹣lnx2)=2(x2﹣x1)+a(lnx1﹣lnx2),则=﹣2+,则问题转为证明<1即可,即证明lnx1﹣lnx2>x1﹣x2,即证2lnx1>x1﹣在(0,1)上恒成立,设h(x)=2lnx﹣x+,(0<x<1),其中h(1)=0,求导得h′(x)=﹣1﹣=﹣=﹣<0,则h(x)在(
8、0,1)上单调递减,∴h(x)>h(1),即2lnx﹣x+>0,故2lnx>x﹣,则<a﹣2成立. 2.(2018•新课标Ⅰ)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=
此文档下载收益归作者所有