欢迎来到天天文库
浏览记录
ID:53243688
大小:1.81 MB
页数:28页
时间:2020-04-02
《2012高考数学最后冲刺 空间直线与平面.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、最后冲刺【高考预测】1.空间直线与平面的位置关系2.空间角3.空间距离4.简单几何体5.利用三垂线定理作二面角的平面角6.求点到面的距离7.折叠问题易错点1空间直线与平面的位置关系1.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F.(1)证明:PA//平面EDB;(2)证明:BP⊥平面EFD;(3)求二面角C—PD—D的大小.【错误解答】第(2)问证明:∵PD=DC,E为PC的中点,∴DE⊥PC,∴DF在平面PBC上的射影为EF,又由已知EF⊥PB,所以根据三垂线定理可得:DF⊥PB,又EF⊥PB,∴PB⊥平面EFD。
2、【错解分析】直线在平面上的射影的概念理解错误,只有DE⊥PC,不能得出EF为DF在面PBC上的射影,应先证明DE⊥平面PBC,才能得出EF为DF在面PBC上的射影,再利用三垂线定理。【正确解答】(1)如图,连接AC、AC交BD于O,连接EO。∵底面ABCD为正方形,∴O为AC的中点,在△PAC中,EO是中位线,∴PA//EO,又EO平面EDB,且PA平面EDB,所以PA//平面EDB;(2)∵PD⊥平面ABCD,∴平面PDC⊥平面ABCD,又底面ABCD为正方形,∴BC⊥CD,∴BC⊥平面PCD,∴BC⊥DE,又DE⊥PC,∴DE⊥平面PBC,∴DF在平面PBC上的射影为EF,又EF⊥PB,∴
3、DF⊥PB,又PB⊥EF,∴PB⊥平面DEF;(3)由(2)知,PB⊥DF,故∠EFD是二面角C—PB—D的平面角。由(2)知,DE⊥EF,PD⊥DB,设正方形ABCD的边长为a则PD=DC=a,BD=a,PB=a,PC=a,DE=PC=,在Rt△PDBk,OF=.在Rt△EFD中,sin∠EFD=,∴∠EFD=所以二面角C—PB—-28-用心爱心专心D的大小为2.下列五个正方体图形中,l是正方体的一条对角线,点M、N、P分别为其所在棱的中点,能得出l⊥面MNP的图形的序号是_________.(写出所有符合要求的图形序号)【错误解答】由于l在MN、NP、MP所在的面内的射影分别为各面正方形的
4、对角线,由正方形的性质可得l⊥MN,l⊥MP,l⊥NP,∴(1)中l⊥面MNP;(2)中l在下底面的射影与MP垂直,∴l⊥MP,∴l⊥面MNP;(3)中取AB的中点E,连接ME、NE,∵l在下底面的射影垂直于EN,∴l⊥EN,∴l⊥面MEN,∴l⊥MN,同理l⊥MP,∴l⊥面MNP;(4)中l在面ADD1A1上的射影与MP垂直,∴l⊥MP,∴l⊥面MNP;(5)中取AA1中点E,连接ME,EP,l在面ADD1A1、面ABB1A1内的射影分别与ME,EP垂直,∴l⊥ME,∴l⊥面MP,得l⊥面MPN;综合知,本题的答案是(1)、(2)、(3)、(4)、(5)【错解分析】直线与平面垂直的判定有误,
5、证一条直线与一个面垂直,应该证明这条直线与该平面内的两条相交直线垂直,而错解中只证一条垂直,所以出错。【正确解答】(1)中l在面ADD1A、A1B1C1D1,内的射影分别为AD1,B1D1,而AD1⊥MN,B1D1⊥MP,∴l⊥MN,l⊥MP,∴l⊥面MNP;(2)中若l⊥MN,则取AA1的中点E,连接ME、NE,l在面ADD1A1内的射影为AD1而AD1⊥ME,∴l⊥ME,结合l⊥MN,得l⊥面MEN,∴l⊥NE,这显然不可能,∴l与MN不可能垂直,∴l与面MNP不垂直;(3)类似(2)的证明,可得l与面MNP不垂直;(4)中l⊥MP易证,而MN∥AC,l⊥AC,∴l⊥MN,∴l⊥面MNP;
6、(5)中取AA1中点E,连接ME,PE,可证得l⊥面MEP,∴l⊥MP,同理可证l⊥NP,∴l⊥面MNP,综上知,本题的正答案是(1)、(4)、(5)。3.(2012精选模拟)如图10-4所示,在正三棱锥A—BCD中,∠BAC=30°,AB=a,平行于AD、BC的截面EFGH分别交AB、BD、DC、CA于E、F、G、H。(1)判定四边形EFGH的形状,并说明理由;(2)设P是棱AD上的点,当AP为何值时,平面PBC⊥平面EFGH,请给出证明。-28-用心爱心专心【错误解答】(1)∵AD∥平面EFGH,又平面ACD平面EFGH=HG,∴AD∥HG,同理AD∥EF,∴EF∥HG,同理EH∥FG,∴
7、四边形EFGH为平行四边形;(2)取AD中点P,连接BP、CP,∵ABCD为正棱锥,所以BP⊥AD,CP⊥AD,∴AD⊥面BCP,又由(1)知HG∥AD,∴HG⊥面BCP,∴P为所求,此时AP=.【特别提醒】解线面位置关系的题目,首先要熟悉各种位置关系的判定方法及性质,其次解题时应将判定与性质结合起来,多用分析法,如要证a∥α则过a作一平面β,使βα=b,再证a∥b;第三要善于转化,如两条羿面直线
此文档下载收益归作者所有