欢迎来到天天文库
浏览记录
ID:52871488
大小:5.48 MB
页数:60页
时间:2020-03-30
《鲁京津琼专用2020版高考数学大一轮复习第二章函数概念与基本初等函数Ⅰ2.8函数与方程课件.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§2.8函数与方程ZUIXINKAOGANG最新考纲1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.2.根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法.NEIRONGSUOYIN内容索引基础知识自主学习题型分类深度剖析课时作业1基础知识自主学习PARTONE1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈D),把使的实数x叫做函数y=f(x)(x∈D)的零点.(2)三个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与有交
2、点⇔函数y=f(x)有.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有______,那么,函数y=f(x)在区间内有零点,即存在c∈(a,b),使得,这个也就是方程f(x)=0的根.f(x)=0x轴零点f(a)·知识梳理ZHISHISHULIf(b)<0(a,b)f(c)=0cΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点_____________________无交点零点个数________2.二次函数y=ax2+bx+c(a>0)的图象与零点的关
3、系(x1,0),(x2,0)(x1,0)210函数f(x)的图象连续不断,是否可得到函数f(x)只有一个零点?提示不能.【概念方法微思考】题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.()(2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.()(3)二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点.()(4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)4、.()××√√基础自测JICHUZICE123456题组二 教材改编且函数f(x)的图象在(0,+∞)上连续不断,f(x)为增函数,∴f(x)的零点在区间(2,3)内.√1234563.函数f(x)=ex+3x的零点个数是A.0B.1C.2D.3解析由f′(x)=ex+3>0,得f(x)在R上单调递增,123456√因此函数f(x)有且只有一个零点.题组三 易错自纠4.函数f(x)=ln2x-3lnx+2的零点是A.(e,0)或(e2,0)B.(1,0)或(e2,0)C.(e2,0)D.e或e2解析f(x)=ln2x-3lnx+2=(lnx5、-1)(lnx-2),由f(x)=0得x=e或x=e2.√1234561234565.若二次函数f(x)=x2-2x+m在区间(0,4)上存在零点,则实数m的取值范围是.(-8,1]解析m=-x2+2x在(0,4)上有解,又-x2+2x=-(x-1)2+1,∴y=-x2+2x在(0,4)上的值域为(-8,1],∴-80),g(x)=x+ex,h(x)=x+lnx(x>0)的零点分别为x1,x2,x3,则A.x16、示,可知选C.√2题型分类 深度剖析PARTTWO题型一 函数零点所在区间的判定1.设f(x)=lnx+x-2,则函数f(x)的零点所在的区间为A.(0,1)B.(1,2)C.(2,3)D.(3,4)√自主演练解析∵f(1)=ln1+1-2=-1<0,f(2)=ln2>0,∴f(1)·f(2)<0,∵函数f(x)=lnx+x-2的图象在(0,+∞)上是连续的,且为增函数,∴f(x)的零点所在的区间是(1,2).2.若a7、)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内解析∵a0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0,由函数零点存在性定理可知,在区间(a,b),(b,c)内分别存在零点,又函数f(x)是二次函数,最多有两个零点.因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内,故选A.√3.已知函数f(x)=logax+x-b(a>0且a≠1).当28、n∈N*,则n=.解析对于函数y=logax,当x=2时,可得y<1,当x=3时,可得y>1,在同一坐标系中画出函数y=logax,y=-x+b的图象,判断两个函数图象的交点的横
4、.()××√√基础自测JICHUZICE123456题组二 教材改编且函数f(x)的图象在(0,+∞)上连续不断,f(x)为增函数,∴f(x)的零点在区间(2,3)内.√1234563.函数f(x)=ex+3x的零点个数是A.0B.1C.2D.3解析由f′(x)=ex+3>0,得f(x)在R上单调递增,123456√因此函数f(x)有且只有一个零点.题组三 易错自纠4.函数f(x)=ln2x-3lnx+2的零点是A.(e,0)或(e2,0)B.(1,0)或(e2,0)C.(e2,0)D.e或e2解析f(x)=ln2x-3lnx+2=(lnx
5、-1)(lnx-2),由f(x)=0得x=e或x=e2.√1234561234565.若二次函数f(x)=x2-2x+m在区间(0,4)上存在零点,则实数m的取值范围是.(-8,1]解析m=-x2+2x在(0,4)上有解,又-x2+2x=-(x-1)2+1,∴y=-x2+2x在(0,4)上的值域为(-8,1],∴-80),g(x)=x+ex,h(x)=x+lnx(x>0)的零点分别为x1,x2,x3,则A.x16、示,可知选C.√2题型分类 深度剖析PARTTWO题型一 函数零点所在区间的判定1.设f(x)=lnx+x-2,则函数f(x)的零点所在的区间为A.(0,1)B.(1,2)C.(2,3)D.(3,4)√自主演练解析∵f(1)=ln1+1-2=-1<0,f(2)=ln2>0,∴f(1)·f(2)<0,∵函数f(x)=lnx+x-2的图象在(0,+∞)上是连续的,且为增函数,∴f(x)的零点所在的区间是(1,2).2.若a7、)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内解析∵a0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0,由函数零点存在性定理可知,在区间(a,b),(b,c)内分别存在零点,又函数f(x)是二次函数,最多有两个零点.因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内,故选A.√3.已知函数f(x)=logax+x-b(a>0且a≠1).当28、n∈N*,则n=.解析对于函数y=logax,当x=2时,可得y<1,当x=3时,可得y>1,在同一坐标系中画出函数y=logax,y=-x+b的图象,判断两个函数图象的交点的横
6、示,可知选C.√2题型分类 深度剖析PARTTWO题型一 函数零点所在区间的判定1.设f(x)=lnx+x-2,则函数f(x)的零点所在的区间为A.(0,1)B.(1,2)C.(2,3)D.(3,4)√自主演练解析∵f(1)=ln1+1-2=-1<0,f(2)=ln2>0,∴f(1)·f(2)<0,∵函数f(x)=lnx+x-2的图象在(0,+∞)上是连续的,且为增函数,∴f(x)的零点所在的区间是(1,2).2.若a
7、)和(b,c)内B.(-∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内解析∵a0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0,由函数零点存在性定理可知,在区间(a,b),(b,c)内分别存在零点,又函数f(x)是二次函数,最多有两个零点.因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内,故选A.√3.已知函数f(x)=logax+x-b(a>0且a≠1).当28、n∈N*,则n=.解析对于函数y=logax,当x=2时,可得y<1,当x=3时,可得y>1,在同一坐标系中画出函数y=logax,y=-x+b的图象,判断两个函数图象的交点的横
8、n∈N*,则n=.解析对于函数y=logax,当x=2时,可得y<1,当x=3时,可得y>1,在同一坐标系中画出函数y=logax,y=-x+b的图象,判断两个函数图象的交点的横
此文档下载收益归作者所有