勾股定理及其逆定理的综合应用.pptx

勾股定理及其逆定理的综合应用.pptx

ID:52738846

大小:1007.93 KB

页数:31页

时间:2020-02-28

勾股定理及其逆定理的综合应用.pptx_第1页
勾股定理及其逆定理的综合应用.pptx_第2页
勾股定理及其逆定理的综合应用.pptx_第3页
勾股定理及其逆定理的综合应用.pptx_第4页
勾股定理及其逆定理的综合应用.pptx_第5页
资源描述:

《勾股定理及其逆定理的综合应用.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、八年级下册17.2.1勾股定理的逆定理BCA问题1勾股定理的内容是什么?如果直角三角形的两条直角边长分别为a,b,斜边为c,那么a2+b2=c2.bca问题2求以线段a、b为直角边的直角三角形的斜边c的长:①a=3,b=4;②a=2.5,b=6;③a=4,b=7.5.c=5c=6.5c=8.5思考以前我们已经学过了通过角的关系来确定直角三角形,可不可以通过边来确定直角三角形呢?问题思考同学们你们知道古埃及人用什么方法得到直角的吗?(1)(2)(3)(4)(5)(6)(7)(8)(13)(12)(11)(10)(9)打13个等距的结,把一根绳子分成等长的12段,然后以

2、3段,4段,5段的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.情景思考思考:从前面我们知道古埃及人认为一个三角形三边长分别为3,4,5,那么这个三角形为直角三角形.按照这种做法真能得到一个直角三角形吗?大禹治水相传,我国古代的大禹在治水时也用了类似的方法确定直角.情景思考下面有三组数分别是一个三角形的三边长a,b,c:①5,12,13;②7,24,25;③8,15,17.问题分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?是探究点一:勾股定理的逆定理活动探究下面有三组数分别是一个三角形的三边长a,b,c:①5,12,13;②7,24,

3、25;③8,15,17.问题2这三组数在数量关系上有什么相同点?①5,12,13满足52+122=132,②7,24,25满足72+242=252,③8,15,17满足82+152=172.问题3古埃及人用来画直角的三边满足这个等式吗?∵32+42=52,∴满足.a2+b2=c2活动探究我觉得这个猜想不准确,因为测量结果可能有误差.我也觉得猜想不严谨,前面我们只取了几组数据,不能由部分代表整体.问题3据此你有什么猜想呢?由上面几个例子,我们猜想:命题2如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.活动探究△ABC≌△A′B′C′?∠C

4、是直角△ABC是直角三角形ABCabc已知:如图,△ABC的三边长a,b,c,满足a2+b2=c2.求证:△ABC是直角三角形.构造两直角边分别为a,b的Rt△A′B′C′证一证:活动探究证明:作Rt△A′B′C′,使∠C′=90°,A′C′=b,B′C′=a,∴△ABC≌△A′B′C′(SSS),∴∠C=∠C′=90°,即△ABC是直角三角形.则ACaBbc活动探究勾股定理的逆定理:如果三角形的三边长a、b、c满足a2+b2=c2那么这个三角形是直角三角形.ACBabc勾股定理的逆定理是直角三角形的判定定理,即已知三角形的三边长,且满足两条较小边的平方和等于最长边

5、的平方,即可判断此三角形为直角三角形,最长边所对应的角为直角.特别说明:归纳总结活动探究例1下面以a,b,c为边长的三角形是不是直角三角形?如果是,那么哪一个角是直角?(1)a=15,b=8,c=17;解:(1)∵152+82=289,172=289,∴152+82=172,根据勾股定理的逆定理,这个三角形是直角三角形,且∠C是直角.(2)a=13,b=14,c=15.活动探究例1下面以a,b,c为边长的三角形是不是直角三角形?如果是,那么哪一个角是直角?(1)a=15,b=8,c=17;(2)a=13,b=14,c=15.解:(2)∵132+142=365,152

6、=225,∴132+142≠152,不符合勾股定理的逆定理,∴这个三角形不是直角三角形.归纳:根据勾股定理的逆定理,判断一个三角形是不是直角三角形,只要看两条较小边长的平方和是否等于最大边长的平方.典例精讲【变式题1】若△ABC的三边a,b,c满足a:b:c=3:4:5,是判断△ABC的形状.解:设a=3k,b=4k,c=5k(k>0),∵(3k)2+(4k)2=25k2,(5k)2=25k2,∴(3k)2+(4k)2=(5k)2,∴△ABC是直角三角形,且∠C是直角.归纳:已知三角形三边的比例关系判断三角形形状:先设出参数,表示出三条边的长,再用勾股定理的逆定理判

7、断其是否是直角三角形.如果此直角三角形的三边中有两个相同的数,那么该三角形还是等腰三角形.举一反三【变式题2】(1)若△ABC的三边a,b,c,且a+b=4,ab=1,c=,试说明△ABC是直角三角形.解:∵a+b=4,ab=1,∴a2+b2=(a+b)2-2ab=16-2=14.又∵c2=14,∴a2+b2=c2,∴△ABC是直角三角形.活动探究(2)若△ABC的三边a,b,c满足a2+b2+c2+50=6a+8b+10c.试判断△ABC的形状.解:∵a2+b2+c2+50=6a+8b+10c,∴a2-6a+9+b2-8b+16+c2-10c+25=0.即(a

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。