资源描述:
《相似形综合复习课件_3.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、相似三角形复习课一.比例线段知识要点1.成比例的项:叫做成比例的项。那么或若,::cbaddcbadcba==,,,其中:a、b、c、d叫做组成比例的项,线段a、d叫做比例外项,线段b、c叫做比例内项,若四条线段a、b、c、d中,如果(或a:b=c:d),那么这四条线段a、b、c、d叫做成比例的线段,简称比例线段.acbd=比例的性质:bcaddcba=Û=;1.若a,b,c,d成比例,且a=2,b=3,c=4,那么d=62、下列各组线段的长度成比例的是()A.2,3,4,1B.1.5,2.5,6.5,4.5C.1.1,2.2,3.3,4.4D.1,2,2,4mnm=n56已知,求的值.解:
2、方法(1)由对调比例式的两内项比例式仍成立得:mn65=方法(2)因为,所以5m=6nm6n5=6mn=所以53、4、已知1)x:(x+1)=(1—x):3,求x。(2)若,求。(3)若,求,.=-2x3y+yx12yxa+bb=65aba-bb56已知1,2,3三个数,请你再添上一个数,写出一个比例式。一.比例线段2.比例中项:练习:当两个比例内项相等时,即abbc=,(或a:b=b:c),那么线段b叫做线段a和c的比例中项.2acb=即:一.比例线段知识要点3.黄金分割:ACB练习:4黄金三角形ABCDEF顶角为36°的等腰三角形叫做黄金三角形图中有多少个黄金三角形?ABCDEFGHNM
3、找出图中线段的黄金分割点?黄金矩形把线段AC黄金分割,分割点为B,则以AB、BC为邻边的矩形ABCD叫做黄金矩形,即黄金矩形的两条邻边长度的比值约为0.618.ABDCFE若在黄金矩形ABCD中画出正方形ABEF,则得到黄金矩形ECDF如此继续下去…可得到一连串的黄金矩形1.相似三角形的定义:对应角相等、对应边成比例的三角形叫做相似三角形。2.相似比:相似三角形的对应边的比,叫做相似三角形的相似比。练习:二.相似三角形知识要点△ABC∽△A/B/C/,如果BC=3,B/C/=1.5,那么△A/B/C/与△ABC的相似比为_________.3.相似三角形的判定方法预备定理:相似三角形的传递性
4、.ABCDEDEABC判定定理1,2,3.△1∽△2△2∽△3或△2≌△3△1∽△3∵DE∥BC,∴△ADE∽△ABC.直角三角形相似的判定.DCBA求证:△ACD∽△ABC∽△CBD.已知:∠ACB=Rt∠,CD⊥AB于D相似三角形基本图形的回顾:现在给你一个锐角三形ABC和一条直线MN问题:请同学们利用直线MN在△ABC上或在边的延长线作出一个三角形与△ABC相似,并请同学们说明理由ABCMN第一种作法:理由:(1)DE∥BC(2)∠ADE=∠B或∠AED=∠C(3)AD:AB=AE:AC第二种作法:理由:(1)∠ADE=∠C或∠AED=∠B(2)AE:AB=AD:ACAEBCDADEB
5、CM第三种作法:理由:(1)DE∥BC(2)∠ADE=∠B或∠AED=∠C(3)AD:AB=AE:AC第四种作法:理由:(1)∠ADE=∠C或∠AED=∠B(2)AE:AB=AD:ACABCEDABCEDMNMN第五种作法:理由:(1)DE∥BC(2)∠ADE=∠ABC或∠AED=∠ACB(3)AD:AB=AE:AC第六种作法:理由:(1)∠ADE=∠ACB或∠AED=∠ABC(2)AE:AB=AD:ACABCABCDEMNMDEN第七种作法:(1)∠ACD=∠B(2)∠ADC=∠ACB(3)AD:AC=AC:ABABDCMNADEBACBABCD△ADE绕点A旋转DCADEBCABCDEB
6、CADE点E移到与C点重合∠ACB=Rt∠CD⊥AB相似三角形基本图形的回顾:证明:∵CD⊥AB,E为AC的中点∴DE=AE∴∠EDA=∠A∵∠EDA=∠FDB∴∠A=∠FDB∵∠ACB=Rt∠∴∠A=∠FCD∴∠FDB=∠FCD∵△FDB∽△FCD∴BD:CD=DF:CF∴BD·CF=CD·DF例1如图,CD是Rt△ABC斜边上的高,E为AC的中点,ED交CB的延长线于F。CEADFB这个图形中有几个相似三角形的基本图形求证:BD·CF=CD·DF二.知识应用:1.找一找:(1)如图1,已知:DE∥BC,EF∥AB,则图中共有_____对三角形相似.(2)如图2,已知:△ABC中,∠ACB
7、=Rt∠,CD⊥AB于D,DE⊥BC于E,则图中共有_____个三角形和△ABC相似.ABCDEF如图(1)3EABCD如图(2)4(3)如图3,∠1=∠2=∠3,则图中相似三角形的组数为________.ADBEC132如图(3)4(4)已知:四边形ABCD内接于⊙O,连结AC和BD交于点E,则图中共有_____对三角形相似.·ABCDEO(5)已知:四边形ABCD内接于⊙O,连结AC和BD交于点E,且AC