欢迎来到天天文库
浏览记录
ID:52559752
大小:465.50 KB
页数:8页
时间:2020-03-28
《2018届高三第15次周测(文科)高中-数学-公式默写.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、2018届高三第15次周测(文科)公式默写姓名_____________班别___________学号________1、基本初等函数的导数公式(1)(为常数)(2)(3)(4)(5)(6)(7)(8)2、导数的四则运算法则(1)(2)(3)()3、任意角的三角函数的定义设是一个任意角,角的终边上任意一点,它与原点的距离是即,那么,,.4、同角三角函数关系式(1)平方关系:(2)商数关系:5、诱导公式(1)(2)(3)(4)(5)(6)6、、两角和与差的三角函数公式87、二倍角的三角函数公式(1)余弦==变形:降次公式,(2)正弦(3)正切4、三角函数的图像与性质图象定义域值域周
2、期奇偶性单调性递增:递减:递增:递减:递增:对称轴无对称中心最值当时当时当时当时无81、数列前项和和与通项公式的关系:(数列的前n项的和为).2、等差、等比数列公式对比等差数列等比数列定义式通项公式及推广公式中项公式若成等差若成等比运算性质若前项和公式一个性质成______数列成等比数列二、解三角形1、正弦定理:在中,、、分别为角A、B、的对边,则有_____________2、余弦定理:①,,.②,,.3、三角形面积公式:==.三、平面向量1、向量的模:若,则
3、
4、若,则
5、
6、=___2、向量的线性运算与数量积运算:若,则,,,平面向量的数量积定义:,.(为向量的夹角.)8三、平面
7、向量1、向量的模:若,则
8、
9、若,则
10、
11、=___2、向量的线性运算与数量积运算:若,则,,,平面向量的数量积定义:,.(为向量的夹角3、向量的平行与垂直的判定:(1)平面向量共线定理:①∥(≠)存在惟一的实数使得;②若则∥____(可以为)(2)两个向量垂直的充要条件:① ②设,则1.斜率公式(其中、)..2.直线的五种方程(1)点斜式(直线过点,且斜率为).3.两条直线的平行和垂直(1)若,①;②.(2)若, ,①②;4.平面两点间的距离公式=_______________________(其中A,B)5.点到直线的距离(点,直线:).6.圆的两种方程(1)标准方程:.圆
12、心,半径为;(2)一般方程:(>0).4.平面两点间的距离公式=_______________________(其中A,B)5.点到直线的距离(点,直线:).6.圆的两种方程(1)标准方程:.圆心,半径为;(2)一般方程:(>0).7、★直线与圆的位置关系:设直线,圆,圆心8到l的距离为,常化为线心距与半径关系,如:用垂径定理,构造Rt△解决弦长问题,如:d>r相离;__________相切;______相交.。五.1、椭圆的简单几何性质标准方程图形范围顶点长轴、长轴长短轴、短轴长焦点焦距对称性对称轴:对称中心:离心率2.双曲线的简单几何性质标准方程图形范围顶点实轴、实轴长虚轴、
13、虚轴长焦点焦距对称性对称轴:对称中心:离心率8渐近线方程3、抛物线的几何性质:标准方程图形顶点对称轴焦点准线离心率;8.有理数指数幂的性质(1)______(a>0,r,s∈Q);(2)=_______(a>0,r,s∈Q);(3)=________(a>0,b>0,r∈Q).9.指数式与对数式的互化:⇔________10.对数的运算法则:如果a>0,a≠1,N>0,M>0有(1)=___________;(2)______=logaM-logaN;(3)=________11、(1)对数恒等式:________;(2)________(3)换底公式:_________(换成以
14、b为底的对数)(4)_______(5)_________12.反函数的定义域、值域分别是原函数的值域、定义域;同底的指数函数y=与________互为反函数,它们的图象关于直线________对称.13、指数函数>0且的图象和性质: a>10<a<1图象 8性质定义域_______;值域_________________过点________,即x=0时,y=1单调性:单调性:x>0时,____1;x<0时,0<<1 x>0时,_________________x<0时,_________________奇偶性14、对数函数>0且的图象和性质: a>10<a<1图象 性质 定
15、义域_______;值域_________________ 过点________,即x=1时,y=0单调性:单调性: 奇偶性 奇偶性15、幂函数(1).幂函数的定义:形如________(α∈R,α是常数,x是自变量)的函数叫幂函数.(2)在同一平面直角坐标系内作出幂函数,,,, 的图像 定义域值域奇偶性8单调性[0,+∞)(0,+∞)(-∞,0](-∞,0)公共点8
此文档下载收益归作者所有