欢迎来到天天文库
浏览记录
ID:52522540
大小:270.00 KB
页数:2页
时间:2020-03-28
《相似三角形的性质--导学案.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、《相似三角形的性质》学案【学习目标】知识与技能:理解并运用相似三角形的性质,灵活运用相似三角形的性质解题。过程与方法:经历探索相似三角形性质的过程,发展逻辑思维能力和应用能力。情感与价值观:感受数学学习中的推理过程,积极参与推理活动。ABCED【温故知新】1、相似三角形的判定方法有哪一些?2、如图,在△ABC中,DE∥BC,若AD:DB=1:3,则△ADE与△ABC的相似比为。3、已知:△ABC△∽ABC,AB=2cm,BC=3cm,AB=4cm,AC=2cm,则AC=cm,BC=cm。【学习过程】
2、1、自主学习:两个相似三角形,除了对应边成比例、对应角相等之外,还可以得到许多有用的结论.例如,如图:△ABC和△A′B′C′是两个相似三角形,相似比为k,其中AD、A′D′分别为BC、B′C′边上的高,那么AD:A′D′的值与相似比有何关系:? 解:∵AD,A′D′分别是△ABC和△A′B′C′的高∴∠ADB=∠A′D′B′=90°又∵△ABC∽△A′B′C′且相似比为k∴∠B=∠B′∴________∽_______。∴归纳:相似三角形对应边上高的比等于____________类比以上推导过程可
3、知:相似三角形对应边上的中线、对应角的角平分线的比等于2、合作探究:(1)猜想相似三角形的周长比与相似比的关系,并简单分析原因。∵△ABC∽△A′B′C′,=k,∴AB=______,BC=______,CA=_______∴___________________=_______即,相似三角形的周长比等于__________________。(2)猜想相似三角形的面积比与相似比的关系,并用逻辑推理的方法加以证明。已知:△ABC∽△A′B′C′,且相似比为k,AD、A′D′分别是△ABC、△A′B′C
4、′对应边BC、B′C′上的高。求证:证明:即,相似三角形的面积比等于_____________________。【巩固练习】1、若△ABC∽△A′B′C′,且,△ABC的周长为12cm,则△A′B′C′的周长为。ABCDE2、如图,D、E分别是△ABC的边AB、AC上的点,==,则△AED与△ABC的面积比是()A、1:2B、1:3C、1:4D、4:9【疑问与收获】你的收获是:。你的疑点是:。【当堂检测】A1.相似三角形对应边的比为2:5,那么对应边上高的比为______,对应边上的中线的比为___
5、___,对应角的角平分线的比为______,周长比为______,面积比为______.DE2.如右图,△ABC中,DE∥BC,BC=,则,3.如右图,在梯形ABCD中,AD//BC,AC,BD交于点O,如果,那么AD:BC=________。4.如下图,在正方形网格上有和,这两个三角形相似吗?如果相似,请说明理由,并求出和的面积比.
此文档下载收益归作者所有