欢迎来到天天文库
浏览记录
ID:52282173
大小:2.16 MB
页数:45页
时间:2020-04-03
《机器人学数学基础.ppt》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、机器人运动学数学基础2.1位置和姿态的表示2.2坐标变换2.3齐次坐标变换2.4旋转矩阵机器人技术数学基础MathematicPreparationforRobotics2.1机器人位置和姿态的描述机器人可以用一个开环关节链来建模由数个驱动器驱动的转动或移动关节串联而成一端固定在基座上,另一端是自由的,安装工具,用以操纵物体人们感兴趣的是操作机末端执行器相对于固定参考坐标数的空间几何描述,也就是机器人的运动学问题机器人的运动学即是研究机器人手臂末端执行器位置和姿态与关节变量空间之间的关系运动学研究的问题Whereismyhand?Dire
2、ctKinematicsHERE!HowdoIputmyhandhere?InverseKinematics:Choosetheseangles!运动学正问题运动学逆问题研究的两类问题:运动学正问题---已知杆件几何参数和关节角矢量,求操作机末端执行器相对于固定参考作标的位置和姿态(齐次变换问题)。运动学逆问题---已知操作机杆件的几何参数,给定操作机末端执行器相对于参考坐标系的期望位置和姿态(位置),操作机能否使其末端执行器达到这个预期的位姿?如能达到,那么操作机有几种不同形态可以满足同样的条件?研究的对象机器人从机构形式上分为两种,一
3、种是关节式串联机器人,另外一种是并联机器人。PUMA560HexapodFanucmanipulator这两种机器人有所不同:串联机器人:工作空间大,灵活,刚度差,负载小,误差累积并放大。并联机器人:刚性好,负载大,误差不积累,工作空间小,姿态范围不大。本章讲解以串联机器人为主。D-H方法基本思想给每个关节指定一个参考坐标系,然后,确定从一个关节到下一个关节(一个坐标系到下一个坐标系)来进行变换的步骤。如果将从基座到第一个关节,再从第一个关节到第二个关节直至到最后一个关节的所有变换结合起来,就得到了机器人的总变换矩阵。D-H模型表示了对机
4、器人连杆和关节进行建模的一种非常简单的方法,可用于任何机器人构型,而不管机器人的结构顺序和复杂程度如何。它也可用于表示已经讨论过的在任何坐标中的变换,例如直角坐标、圆柱坐标、球坐标、欧拉角坐标及RPY坐标等。另外,它也可以用于表示全旋转的链式机器人、SCARA机器人或任何可能的关节和连杆组合。a0vzyxzyxpcb0uEH图2.1点向量的描述•数学基础—齐次坐标和齐次变换点向量(Pointvectors)点向量描述空间的一个点在某个坐标系的空间位置。同一个点在不同坐标系的描述及位置向量的值也不同。如图2.1中,点p在E坐标系上表示为Ev
5、,在H坐标系上表示为Hu,且v≠u。一个点向量可表示为v=ai+bj+ck通常用一个(n+1)维列矩阵表示,即除x、y、z三个方向上的分量外,再加一个比例因子w,即v=[xyzw]T其中a=x/w,b=y/w,c=z/w。已知两个向量a=axi+ayj+azkb=bxi+byj+bzk(2.1)向量的点积是标量。用“·”来定义向量点积,即a·b=axbx+ayby+azbz(2.2)向量的叉积是一个垂直于由叉积的两个向量构成的平面的向量。用“×”表示叉积,即a×b=(aybz¯azby)i+(azbx¯axbz)j+(axby¯ayby)
6、k(2.3)可用行列式表示为ijka×b=axayaz(2.4)bxbybz2.2点齐次坐标2.2.1点的齐次坐标一般来说,n维空间的齐次坐标表示是一个(n+1)维空间实体。有一个特定的投影附加于n维空间,也可以把它看作一个附加于每个矢量的特定坐标—比例系数。式中i,j,k为x,y,z轴上的单位矢量,a=,b=,c=,w为比例系数显然,齐次坐标表达并不是唯一的,随w值的不同而不同。在计算机图学中,w作为通用比例因子,它可取任意正值,但在机器人的运动分析中,总是取w=1。列矩阵为什么引入齐次坐标?在欧几里得几何空间里,两条平行线永远都不会相
7、交。但是在投影空间中,如右图中的两条铁轨在地平线处却是会相交的,因为在无限远处它们看起来相交于一点。在欧几里得(或称笛卡尔)空间里描述2D/3D几何物体是很理想的,但在投影空间里面却并不见得。我们用(x,y)表示笛卡尔空间中的一个2D点,而处于无限远处的点(∞,∞)在笛卡尔空间里是没有意义的。投影空间里的两条平行线会在无限远处相交于一点,但笛卡尔空间里面无法搞定这个问题(因为无限远处的点在笛卡尔空间里是没有意义的),因此数学家想出齐次坐标这个点子来了。由AugustFerdinandMöbius提出的齐次坐标(Homogeneouscoo
8、rdinates)让我们能够在投影空间里进行图像和几何处理,齐次坐标用N+1个分量来描述N维坐标。比如,2D齐次坐标是在笛卡尔坐标(X,Y)的基础上增加一个新分量w,变成(x,y,w),其中笛
此文档下载收益归作者所有