《概率论与数理统计》PPT课件.ppt

《概率论与数理统计》PPT课件.ppt

ID:52281648

大小:1.03 MB

页数:14页

时间:2020-04-03

《概率论与数理统计》PPT课件.ppt_第1页
《概率论与数理统计》PPT课件.ppt_第2页
《概率论与数理统计》PPT课件.ppt_第3页
《概率论与数理统计》PPT课件.ppt_第4页
《概率论与数理统计》PPT课件.ppt_第5页
资源描述:

《《概率论与数理统计》PPT课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§6.1总体与样本一、总体一般我们把研究对象的全体称为总体(或母体),而把每一个研究对象称为个体.例如,在研究某灯泡厂生产的灯泡质量时,该厂生产的灯泡全体构成的一个总体,其中每只灯泡都是个体;研究某班高等数学课程的成绩时,该班每个同学都是个体,全体同学构成一个总体.在实际问题中,人们主要关心的往往是研究对象的某个(或某些)数量指标及其在总体中的分布情况.如研究灯泡的质量时,关注的是灯泡的使用寿命这一指标;在研究大学生的体质时,则主要关心的是大学生的身高、体重、视力等指标.由于每个个体都有一个(或多个)数量指标值,那么,所有个体的这些指标值就形成一个集合,该集合包含了研究指标在总体中的所

2、有可能取值.比如,某厂灯泡的寿命指标,其所有可能的取值就是所有具体灯泡寿命值;某班的高等数学成绩这一指标的取值就是该班所有同学的高等数学成绩.数理统计中,我们关心的并不是每个个体的具体指标特征,而关心的正是象某厂灯泡寿命、某班高数成绩这样的总体指标特征.要研究总体的指标,就要进行试验或观察.由于预先不知道观察到的是哪个个体,因而观察到的相应指标值也就不能预先确定,完全是随机的,这样,总体的指标就是一个随机变量,其分布完全描述了指标在总体中的分布状况.于是,在数理统计中就把总体定义为服从某一分布的随机变量X(数量指标),其概率分布称为总体的分布,而每个个体对应随机变量X一个具体观察值.前

3、面谈到的所有个体的指标值集合就是总体X的所有可能取值的集合.二、样本我们知道,研究总体离不开研究它的体.但在许多实际问题中,不可能对所有个体逐一进行研究,而只能从总体中抽取一部分个体进行观察(或试验),根据对这部分个体的观察结果来推断总体的分布情况.一般地,如果从总体中按一定规则抽取n个个体进行观察(或试验),则称这n个个体为总体的一个样本(Sample),样本中所含个体的数目n称为样本容量(SampleSize),抽取一个样本的过程称为抽样(Sampling).本书所涉及的抽样均指随机抽样,即,在具体的抽样之前,哪些个体被抽取,不能预先确定而应由观察(或试验)来定.如果用表示样本中的

4、第i个个体的数量指标,那么一个容量为n的样本就可以表示为,这是一个n维随机向量.如果用表示的观察值,那么,便是样本的一个观察值,称其为样本观察值或样本值,它是一组具体的数据.今后,为了方便起见,记号有时也表示样本值,这可以从上下文的联系来区分:如果在一次具体抽样之前,那么,表示样本,它是一个n维随机向量(这种情形多出现在理论研究或推导中);如果在一次具体抽样之后,则表示样本值,它是一个具体的数值向量(在实际应用中就是这种情形).要想由样本推断总体,就应当使样本既能够反映出总体的特点,又便于数学上的处理.为此,要求样本具有以下两个特性:(1)同分布性,即,样本的各分量与总体X有相同的分布

5、;(2)独立性,即,样本的各分量相互独立.我们把满足以上两个特性的样本称为简单随机样本,把获得简单随机样本的过程,称为简单随机抽样.由于简单随机样本实际上是由一组独立同分布的随机变量构成的,因此,简单随机抽样就是独立地、重复地对总体X做抽样试验.就具体的方法而言,有放回抽样与不放回抽样之分.对于有限总体(即总体中个体的数量有限),我们通常采用放回抽样,这样随机抽取的样本便是一个简单随机样本;对于无限总体(即总体中个体的数量无限),放回抽样与不放回抽样几乎没什么差别,因此通常采用不放回抽样.在实用上,即使对有限总体,只要抽取的的个体数目n与总体中个体的总数目N之比很小(通常要小于0.1)

6、,仍可用不放回抽样,这样得到的样本可近似地看成一个简单随机样本.今后,如不特别申明,我们所说的样本均指简单随机样本.由于样本的各分量独立且每个分量的分布都与总体X的分布相同,所以,对密度函数为的连续型总体X而言,样本的联合密度函数.(6-1)而当总体X是离散型的且其概率函数()时,样本的联合概率函数(或分布为).(6-2)不论是联合密度函数,还是联合概率函数,它们都是样本信息最全面的概括,非常适合在某些场合(如第七章的参数估计)中使用.但这种概括有时也不便或也没必要使用,这时就需要引入能反映样本信息某个侧面的专门特征刻画.三、统计量与样本数字特征1.统计量完全由样本决定的量就称为统计量

7、(Statistic),它只依赖于样本,而不依赖任何未知参数.统计量可以看作是对样本的一种“加工”,是对样本中所含有用信息的一种“提炼”和“集中”.比如对正态总体中抽取的样本来说,每个都含有的信息,而统计量就是对这种信息的一个集中,在做统计推断时,我们2.样本数字特征主要利用的正是这种集中信息的统计量,而不直接利用样本,可以说,统计量是进行统计推断的一个基本工具.设是来自总体X的容量为n的样本,为提炼样本所反映的总体信息,简单的方法就是引进刻画

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。