数学建模实例.ppt

数学建模实例.ppt

ID:52268024

大小:1.40 MB

页数:66页

时间:2020-04-03

数学建模实例.ppt_第1页
数学建模实例.ppt_第2页
数学建模实例.ppt_第3页
数学建模实例.ppt_第4页
数学建模实例.ppt_第5页
资源描述:

《数学建模实例.ppt》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、微分方程模型二、微分方程模型三、微分方程案例分析一、微分方程建模简介四、微分方程的MATLAB求解五、微分方程综合案例分析微分方程是研究变化规律的有力工具,在科技、工程、经济管理、生态、环境、人口和交通各个领域中有广泛的应用。不少实际问题当我们采用微观眼光观察时都遵循着下面的模式:净变化率=输入率-输出率(守恒原理)一、微分方程模型简介引例一在凌晨1时警察发现一具尸体,测得尸体温度是29oC,当时环境的温度是21oC。1h后尸体温度下降到27oC,若人体的正常温度是37oC,估计死者的死亡时间。解:设T(t)为死者在被杀害后t时刻尸体的温度;k为比例系数。由牛顿冷却定律,得则通解

2、为由已知,由因此死者大约是在前一天的夜晚10:35被害的。可得微分方程的特解:,代入解得图1尸体的温度下降曲线建立微分方程的常用方法1、按变化规律直接列方程,如:利用人们熟悉的力学、数学、物理、化学等学科中的规律,如牛顿第二定律,放射性物质的放射规律等。对某些实际问题直接列出微分方程.2、利用微元分析方法建模根据已知的规律或定理,通过寻求微元之间的关系式得出微分方程。3、模拟近似法,如:在生物、经济等学科中,许多现象所满足的规律并不很清楚,而且现象也相当复杂,因而需根据实际资料或大量的实验数据,提出各种假设,在一定的假设下,给出实际现象所满足的规律,然后利用适当的数学方法得出微分

3、方程。微分方程的建模步骤1、翻译或转化:在实际问题中许多表示导数的常用词,如“速率”、‘增长”(在生物学以及人口问题研究中),“衰变”(在放射性问题中),以及“边际的”(在经济学中)等.2、建立瞬时表达式:根据自变量有微小改变△t时,因变量的增量△W,建立起在时段△t上的增量表达式,令△t→0,即得到的表达式.二、微分方程模型3、配备物理单位:在建模中应注意每一项采用同样的物理单位.4、确定条件:这些条件是关于系统在某一特定时刻或边界上的信息,它们独立于微分方程而成立,用以确定有关的常数。为了完整充分地给出问题的数学陈述,应将这些给定的条件和微分方程一起列出。案例1:一位女士每天

4、摄入2500cal食物,1200cal用于基本新陈代谢(即自动消耗),并以每千克体重消耗16cal用于日常锻炼,其他的热量转变为身体的脂肪(设10000cal可转换成1kg脂肪)。星期天晚上,该女士的体重是57.1526kg,星期四那天她饱餐了一顿,共摄入了3500cal的食物,要求建立一个通过时间预测体重的数学模型,并用它估计:(1)星期六该女士的体重?(2)为了不增重,每天她最多的摄入量是多少?(3)若不进食,N周后她的体重是多少?二、微分方程案例分析解1、翻译或转化:2、配备物理单位:3、建立表达式:4、确定条件:1、“每天”:体重的变化=输入一输出其中输入指扣除了基本新陈

5、代谢之后的净重量吸收;输出是进行健身训练时的消耗.2、上述陈述更好的表示结构式:取天为计时单位,记W(t)为t天时体重(kg),则:每天的净吸收量=2500–1200=1300(cal)每天的净输出量=16(cal)×W=16W(cal)转换成脂肪量=1300–16W(cal)3、体重的变化/天=(千克/天)1、翻译或转化:2、配备物理单位:3、建立表达式:4、确定条件:有些量是用能量(cal)的形式给出的,而另外一些量是用重量的形式(cal)给出,考虑单位的匹配,利用单位匹配1、翻译或转化:2、配备物理单位:3、建立表达式:4、确定条件:建立表达式积分后可求得其通解为:(1)当

6、时,每天体重的变化:初始条件为:,代入解出则积分后可求得其通解为:(2)当时,每天体重的变化:初始条件为:,代入解出则积分后可求得其通解为:(2)当时,食物的摄入量恢复正常初始条件为:,代入解出则最后得到不同阶段的微分方程是:(1)代入对应方程,求得现回答上述问题(2)要满足体重不增,即所以因此每天总卡路里摄取量是1200+914=2114cal(cal)(3)由于每天不摄取能量,所以解得因此,n周后的体重为案例2在一个巴基斯坦洞穴里,发现了具有古代尼安德特人特征的人骨碎片,科学家们把它们带到实验室,作碳14年代测定。分析表明C14与C12的比例仅仅是活组织内的6.24%,此人生

7、活在多少年前?(碳14年代测定:活体中的碳有一小部分是放射性同位素C14。这种放射性碳是由于宇宙射线在高层大气中的撞击引起的,经过一系列交换过程进入活组织中,直到在生物体中达到平衡浓度。这意味着在活体中,C14的数量与稳定的C12的数量成定比。生物体死亡后,交换过程就停止了,放射性碳便以每年八千分之一的速度减少)(1)问题分析与模型的建立1、放射性衰变的这种性质还可描述为“放射性物质在任意时刻的衰变速度都与该物质现存的数量成比例”。而C14的比例数为每年八千分之一。2、碳14年代

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。