资源描述:
《立体几何体积问题-.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、立体几何体积问题未命名一、解答题1.如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且,求点到平面的距离.2.如图,多面体中,为正方形,,,且.(1)证明:平面平面;(2)求三棱锥的体积.3.在如图所示的几何体中,平面,四边形为等腰梯形,,,,,,.试卷第5页,总6页(1)证明:;(2)若多面体的体积为,求线段的长.4.如图,在四棱锥中,,,,点在线段上,且,,平面.(1)证明:平面平面;(2)当时,求四棱锥的表面积.5.如图,在四棱锥中,是等边三角形,,,.(Ⅰ)求证:(Ⅱ)若平面平面,,
2、求三棱锥的体积6.如图,三棱柱中,平面平面,平面平面,,点、分别为棱、的中点,过点、的平面交棱于点,使得∥平面.试卷第5页,总6页(1)求证:平面;(2)若四棱锥的体积为,求的正弦值.7.如图,在几何体中,平面底面,四边形是正方形,,是的中点,且,.(1)证明:;(2)若,求几何体的体积.8.在多面体中,底面是梯形,四边形是正方形,,,面面,..(1)求证:平面平面;(2)设为线段上一点,,试问在线段上是否存在一点,使得平面,若存在,试指出点的位置;若不存在,说明理由?(3)在(2)的条件下,求点到平面的距离.
3、试卷第5页,总6页9.已知直三棱柱,底面是边长为2的等边三角形,,为棱的中点,在棱上,且.(1)证明:平面;(2)求三棱锥的体积.10.如图,在三棱锥中,,,,,为线段的中点,将折叠至,使得且交平面于F.(1)求证:平面⊥平面PAC.(2)求三棱锥的体积.11.在矩形所在平面的同一侧取两点、,使且,若,,.(1)求证:(2)取的中点,求证(3)求多面体的体积.试卷第5页,总6页12.如图,在菱形中,,平面,,是线段的中点,.(1)证明:平面;(2)求多面体的表面积.13.如图,在三棱柱中,,,为的中点,.(1)
4、求证:平面平面;(2)求到平面的距离.14.如图,四棱锥中,底面是直角梯形,,,,侧面是等腰直角三角形,,平面平面,点试卷第5页,总6页分别是棱上的点,平面平面(Ⅰ)确定点的位置,并说明理由;(Ⅱ)求三棱锥的体积.15.如图,三棱柱中,侧面侧面,,,,为棱的中点,为的中点.(1)求证:平面;(2)若,求三棱柱的体积.试卷第5页,总6页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。参考答案1.解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△AB
5、C为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.【解析】分析:(1)连接,欲证平面,只需证明即可;(2)过点作,垂足为,只需论证的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,
6、且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.答案第19页,总19页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以
7、线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.2.(1)见解析;(2)【解析】分析:(1)证明面面垂直可通过证明线面垂直得到,证A平面即可,(2)由已知,连接交于,作于,由等体积法:,进而可得出结论.(1)证明:∵,由勾股定理得:又正方形中,且∴平面,又∵面,∴平面平面答案第19页,总19页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。(2)由已知,连接交于作于,则又由(1)知平面平面,平面平面,面,得面由,知四边形为平行四边
8、形,即,而,进而又由,所以,三棱锥的体积.点睛:考查面面垂直、几何体体积,能正确分析线条关系,利用等体积法转化求体积是解题关键.3.(1)证明见解析;(2).【解析】分析:(1)通过证明AB平面ACFE得到;(2)作于点G,设,分别计算出四棱锥的体积,再根据已知条件,求出的值,在直角三角形CFG中求出CF的值。详解:(1)∵平面,∴作于点,在中,,,得,在中,∴答案第19页,总19页本