《向量的概念及运算》PPT课件.ppt

《向量的概念及运算》PPT课件.ppt

ID:52075125

大小:1.04 MB

页数:35页

时间:2020-03-31

《向量的概念及运算》PPT课件.ppt_第1页
《向量的概念及运算》PPT课件.ppt_第2页
《向量的概念及运算》PPT课件.ppt_第3页
《向量的概念及运算》PPT课件.ppt_第4页
《向量的概念及运算》PPT课件.ppt_第5页
资源描述:

《《向量的概念及运算》PPT课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高校理科通识教育平台数学课程微积分学(二)多元微积分学空间解析几何授课教师孙学峰●向量代数与空间解析几何向量的概念与运算.空间直角坐标系向量的数量积、向量积、混合积空间平面及其方程空间直线及其方程空间曲面及其方程§1向量的概念及向量的表示一、向量的基本概念1.向量:既有大小,又有方向的量,称为向量.(或矢量)2.向量的几何表示法:用一条有方向的线段来表示向量.以线段的长度表示向量的大小,有向线段的方向表示向量的方向.AB以A为起点,B为终点的向量,记为AB,,a.向量AB的大小叫做向量的模.记为

2、

3、AB

4、

5、或(一)向量的概念3.自由向量自由向量:只有大小、方向,而

6、无特定起点的向量.具有在空间中可以任意平移的性质.大小相等且方向相同,特别:模为1的向量称为单位向量.模为0的向量称为零向量.它的方向可以看作是任意的.1.向量加法.(1)平行四边形法则设有(若起点不重合,可平移至重合).作以为邻边的平行四边形,对角线向量,称为的和,记作(2)三角形法则将之一平行移动,使的起点与的终点重合,则由的起点到的终点所引的向量为(二)向量的加减法2.向量加法的运算规律.(1)交换律:(2)结合律:例如:3.向量减法.(1)负向量:与模相同而方向相反的向量,称为的负向量.记作(2)向量减法.规定:平行四边形法则.将之一平移,使起点重合,作

7、以为邻边的平行四边形,对角线向量,为三角形法则.将之一平移,使起点重合,由的终点向的终点作一向量,即为1.定义实数与向量的为一个向量.其中:当>0时,当<0时,当=0时,2.数与向量的乘积的运算规律:(1)结合律:(2)分配律:(<0)(>0)(三)数与向量的乘法结论:设表示与非零向量同向的单位向量.则或定理1:两个非零向量平行存在唯一实数,使得(方向相同或相反)例1:在平行四边形ABCD中,设AB=,AD=试用表示向量MA,MB,MC和MD.其中,M是平行四边形对角线的交点.解:=AC=2MC有MC=又=BD=2MD有MD=MB=MDMA=M

8、CDABCM1.点在轴上投影设有空间一点A及轴u,过A作u轴的垂直平面,平面与u轴的交点A'叫做点A在轴u上的投影.A'Au(四)向量在轴上的投影2.向量在轴上的投影.设有向线段AB的起点A和终点B在轴u上的投影分别为点A和B.定义B'BA'Au向量AB在轴u上的投影向量或射影向量.称有向线段AB为如果向量e为与轴u的正方向的单位向量,则称x为向量AB在轴u上的投影,记作即则向量AB的投影向量A'B'有:B'BA'Aue显然;

9、

10、

11、

12、

13、

14、

15、

16、当与u轴同向时,当与u轴反向时,3.两向量的夹角设有非零向量(起点同).规定:正向间位于0到之间的那个夹角为

17、的夹角,记为或(1)若同向,则(2)若反向,则(3)若不平行,则4.向量的投影性质.定理2.(投影定理)设向量AB与轴u的夹角为则PrjuAB=

18、

19、AB

20、

21、·cosBBAAuB1定理3两个向量的和在轴u上的投影等于两个向量在该轴上的投影的和。推论:BBAAuCC即即定理4:实数与向量的乘积在轴u上的投影,等于乘以向量在该轴上的投影。二.空间直角坐标系与空间向量的坐标表示1.空间直角坐标系的建立ozxyzxyx轴(横轴)、y轴(纵轴)、z轴(竖轴)组成了一个空间直角坐标系,又称笛卡尔(Descarstes)坐标系,点O叫做坐标原点.o(一)空

22、间直角坐标系2.坐标面.由三条坐标轴的任意两条确定的平面,称为坐标面,分别叫xy面.yz面、zx面,它们将空间分成八个卦限.zIVVIVVII0xyVIIIIIIIII1.点在空间直角坐标系中的坐标表示.RQP(x,y,z)记:点M为M(x,y,z)OxyzMxyz(二)空间向量的表示(1)若点M在yz面上,则x=0;在zx面上,则y=0;在xy面上,则z=0.(2)若点M在x轴上,则y=z=0在y轴上,则x=z=0在z轴上,则x=y=0特别:2.空间向量的坐标表示(1).起点在原点的向量OM设点M(x,y,z)以i,j,k分别表示沿x,y,z轴正向的单位向

23、量,称为基本单位向量.OM=OA+AN+NM=OA+OB+OC=xi+yj+zkx,y,z,分别是OM在三坐标轴上的投影,称为OM的坐标.zijkMoxyCABzyxN简记为OM={x,y,z}称为向量OM的坐标表示式.zijkMoxyCABzyxN由于:从而:(1)(2).起点不在原点O的任一向量a=M1M2设点M1(x1,y1,z1),M2(x2,y2,z2)a=M1M2=OM2OM1=(x2i+y2j+z2k)(x1i+y1j+z1k)=(x2x1)i+(y2y1)j+(z2z1)k即a={x2x1,y2y1,z2z1}为向量a的坐标表示式记

24、ax=x2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。