矩形的性质与判定的综合应用 (2).pptx

矩形的性质与判定的综合应用 (2).pptx

ID:51740628

大小:133.72 KB

页数:14页

时间:2020-02-29

矩形的性质与判定的综合应用 (2).pptx_第1页
矩形的性质与判定的综合应用 (2).pptx_第2页
矩形的性质与判定的综合应用 (2).pptx_第3页
矩形的性质与判定的综合应用 (2).pptx_第4页
矩形的性质与判定的综合应用 (2).pptx_第5页
资源描述:

《矩形的性质与判定的综合应用 (2).pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、矩形的性质与判定(一)第一章特殊平行四边形平行四边形的性质:边平行四边形的对边平行;平行四边形的对边相等;角平行四边形的对角相等;平行四边形的邻角互补;对角线平行四边形的对角线互相平分;温故知新一个角是直角两组对边分别平行平行四边形矩形情景创设我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说有特殊情况即特殊的平行四边形,这堂课我们就来研究一种恃殊的平行四边形——矩形矩形定义我们生活中充满了矩形这种几何图形,教室里的黑板,门窗,课桌的桌面,信封明信片等都是矩形的形状,你知道什么是矩形吗?你是否了解这种几何图形的性质

2、呢?定义:有一个角是直角的平行四边形叫做矩形活动一在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状。B(1)随着∠a的变化,两条对角线的长度怎样变化的?(2)当∠a变为直角时,平行四边形成为一个矩形,这时它的其他内角是什么样的角?(3)当∠a是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?随着∠a的变化,一条对角线在变长,一条在变短。都变为了直角两条对角线相等活动一综上所述可得矩形的特殊性质:矩形的四个角都是直角.矩形的两条对角线相等且互相平分.矩形本身是平行四边形,所以它具有平行四边形的所有性质边对角线

3、角ABCDO矩形的性质:矩形对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且平分;2:矩形的两条对角线相等.已知:AC,BD是矩形ABCD的两条对角线.说明:AC=BD.解:∵四边形ABCD是矩形,∴AB=DC,∠ABC=∠DCB=900.分析:根据矩形的性质性质,可转化为全等三角形(SAS)来证明.DBCA∵BC=CB,∴△ABC≌△DCB(SAS).∴AC=DB.矩形的性质设矩形的对角线AC与BD交于点E,那么,BE是Rt△ABC中一条怎样的特殊线段?它与AC有什么大小关系?为什么?DBCAE由此可得推论:直角三角形斜边上的中线等于斜边的一半BE是Rt△ABC中斜边

4、AC上的中线.BE等于AC的一半.∵AC=BD,BE=DE,议一议:ODCBA相等的线段:AB=CDAD=BCAC=BDOA=OC=OB=OD=AC=BD相等的角:∠DAB=∠ABC=∠BCD=∠CDA=90°∠AOB=∠DOC∠AOD=∠BOC∠OAB=∠OBA=∠ODC=∠OCD∠OAD=∠ODA=∠OBC=∠OCB等腰三角形有:△OAB△OBC△OCD△OAD直角三角形有:Rt△ABCRt△BCDRt△CDARt△DAB全等三角形有:Rt△ABC≌Rt△BCD≌Rt△CDA≌Rt△DAB△OAB≌△OCD△OAD≌△OCB已知四边形ABCD是矩形四边形ABCD是矩形若已知

5、AB=8㎝,AD=6㎝,则AC=㎝OB=㎝若已知∠CAB=40°,则∠OCB=∠OBA=∠AOB=∠AOD=若已知AC=10㎝,BC=6㎝,则矩形的周长=㎝矩形的面积=㎝24若已知∠DOC=120°,AD=6㎝,则AC=㎝ODCBA练一练本节课你有哪些收获?1.矩形的定义:2.矩形的性质:两组对边分别平行是直角有一个内角四边形平行四边形矩形AB∥CD,且AB=CD;AD∥BC,且AD=BC.AC=BD,OA=OC,OB=OD.=∠CDA∠BCD=∠DAB=900.∠ABC=四边形ABCD是矩形ODCAB思想方法方面:.作业:p13知识技能:1、2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。