贵州省兴义市赛文实验中学2014届高三数学月考试题理(含解析).doc

贵州省兴义市赛文实验中学2014届高三数学月考试题理(含解析).doc

ID:51638919

大小:336.50 KB

页数:14页

时间:2020-03-14

贵州省兴义市赛文实验中学2014届高三数学月考试题理(含解析).doc_第1页
贵州省兴义市赛文实验中学2014届高三数学月考试题理(含解析).doc_第2页
贵州省兴义市赛文实验中学2014届高三数学月考试题理(含解析).doc_第3页
贵州省兴义市赛文实验中学2014届高三数学月考试题理(含解析).doc_第4页
贵州省兴义市赛文实验中学2014届高三数学月考试题理(含解析).doc_第5页
资源描述:

《贵州省兴义市赛文实验中学2014届高三数学月考试题理(含解析).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、贵州省兴义市赛文实验中学2013-2014学年高三月考数学试卷(理科)参考答案与试题解析 一、选择题1.(3分)为了得到函数y=的图象,只需把函数y=的图象(  ) A.向上平移一个单位B.向下平移一个单位 C.向左平移一个单位D.向右平移一个单位考点:函数的图象与图象变化.专题:作图题.分析:由y=f(x)的图象得到y=f(x+a)的图象,遵循规则:当a>0时,向左移a个单位;当a<0时,向右移﹣a个单位即可.解答:解:令f(x)=,则f(x﹣1)=,所以只需将f(x)的图象向右平移一个单位即可得到f(x﹣1)的图象.故选D.点

2、评:本题考查了函数的图象变换,掌握图象变换规则是解决该类题目的基础,注意平移对象及平移方向. 2.(3分)下列判断正确的是(  ) A.函数是奇函数B.函数是偶函数 C.函数是非奇非偶函数D.函数f(x)=1既是奇函数又是偶函数考点:函数奇偶性的判断.专题:探究型;函数的性质及应用.分析:先考虑函数的定义域是否关于原点对称,再验证f(﹣x)与f(x)的关系,即可得到结论.解答:解:A、函数的定义域为(﹣∞,2)∪(2,+∞),不关于原点对称,故非奇非偶;B、函数的定义域为[﹣1,1),不关于原点对称,故非奇非偶;C、函数的定义域为

3、(﹣∞,﹣1]∪[1,+∞),=﹣,故非奇非偶;D、函数f(x)=1,图象关于y轴对称,是偶函数,但不是奇函数故选C.点评:本题考查函数的奇偶性,解题的关键是掌握函数奇偶性的判定步骤,属于中档题. 3.(3分)已知a>0且a≠1,则两函数f(x)=ax和g(x)=logax的图象只可能是(  ) A.B.C.D.考点:函数的图象.专题:作图题.分析:由底数a与1的大小关系确定f(x)和函数h(x)=logax的图象,再由函数h(x)=logax的图象经图象变换得到g(x)的图象.解答:解:若选A,则g(x)=logax;若选B,则

4、g(x)=logax;若选C,g(x)=﹣loga(﹣x);若选D,则g(x)=loga(﹣x).点评:本题主要考查了指数函数与对数函数图象之间的关系以及通过图象变换得到新的函数图象的能力. 4.(3分)(2012•吉安二模)函数是R上的减函数,则a的取值范围是(  ) A.(0,1)B.C.D.考点:函数单调性的性质.专题:计算题.分析:先保证函数y=﹣x+3a在(0,+∞)是减函数,再保证函数y=ax在[0,+∞)上市减函数,最后只要使y=﹣x+3a的最大值大于或等于y=ax的最小值即可.解答:解:有题意可得f(x)=ax是减

5、函数∴0<a<1又∵是R上的减函数∴当x=0时3a≥a0即3a≥1∴a又∵0<a<1∴∴a的取值范围是点评:分别判断出各段函数在其定义区间的单调性,再根据最值的大小保证函数在R上具有单调性. 5.(3分)(2010•龙岩模拟)已知函数f(x)=是定义域上的单调函数,则a的取值范围是(  ) A.(1,+∞)B.[2,+∞)C.(1,2)D.(1,2]考点:分段函数的解析式求法及其图象的作法;复合函数的单调性.分析:因为f(x)是定义域R上的单调函数,所以可能为单调递增函数或是单调递减函数.由对数式f(x)=loga(x﹣1)+3,

6、(x>2)知底数a>0,所以f(x)=ax﹣1在x≤2上单调递增,最小值为f(2)=2a﹣1,由于f(x)在R上是单调函数,所以f(x)=loga(x﹣1)+3,(x>2)上也是单调递增,故a>1,同时还应满足loga(2﹣1)+3≤2a﹣1.解答:解:因为f(x)是定义域R上的单调函数,所以a应满足:,解得:1<a≤2,故选D.点评:本题考查对分段函数和函数单调性的理解掌握程度,若分段函数具有单调性关键点和难点都是在分段点处函数值的比较. 6.(3分)f(x)=x2﹣2x,g(x)=ax+2(a>0),若对任意的x1∈[﹣1,2

7、],存在x0∈[﹣1,2],使g(x1)=f(x0),则a的取值范围是(  ) A.B.C.[3,+∞)D.(0,3]考点:函数的值域;集合的包含关系判断及应用.专题:计算题;压轴题.分析:先求出两个函数在[﹣1,2]上的值域分别为A、B,再根据对任意的x1∈[﹣1,2],存在x0∈[﹣1,2],使g(x1)=f(x0),集合B是集合A的子集,并列出不等式,解此不等式组即可求得实数a的取值范围,注意条件a>0.解答:解:设f(x)=x2﹣2x,g(x)=ax+2(a>0),在[﹣1,2]上的值域分别为A、B,由题意可知:A=[﹣1

8、,3],B=[﹣a+2,2a+2]∴∴a≤又∵a>0,∴0<a≤故选:A点评:此题是个中档题.考查函数的值域,难点是题意的理解与转化,体现了转化的思想.同时也考查了同学们观察、推理以及创造性地分析问题、解决问题的能力, 7.(3分)(2013•惠州

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。