欢迎来到天天文库
浏览记录
ID:51583244
大小:45.52 KB
页数:8页
时间:2020-03-13
《说课案例:勾股定理.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、“探索勾股定理”第一课时一、教材分析(一)教材所处的地位这节课是九年制义务教育初级中学教材北师大版八年级第一章第1节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。(二)根据课程标准,本课的教学目标是:1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。2、探索并理解直角三角形的三边之间的数量关系
2、,进一步发展学生的说理和简单的推理的意识及能力。3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。(三)本课的教学重点:了解勾股定理的由来,并能用它来解决一些简单的问题。本课的教学难点:用面积法(拼图法)发现勾股定理。二、教法与学法分析:教法分析:针对八年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,
3、有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。三、教学过程设计(一)提出问题:1、首先创设这样一个情境:人类一直想要弄清楚其他星球上是否存在着“人”,并试图与“他们”取得联系。那么我们怎么样才能与“外星人”接触呢?我国数学家华罗庚曾建议——向宇宙发射勾股定理的图形与外星人联系。介绍勾股定理,进行点题
4、:(1)介绍《周髀算经》中西周的商高(公元一千多年前)发现了勾三股四弦五这个规律(2)介绍西方毕达哥拉斯于公元前582~493时期发现了勾股定理;(3)康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是其独创;(4)对比以上事实对学生进行爱国主义教育,激励他们奋发向上2、问题:某楼房三楼失火,消防队员赶来救火,了解到每层楼高h=3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离x=2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三
5、角形的两边,如何求第三边?”的问题。学生会感到困难,从而教师指出学习了今天这一课后就有办法解决了。这种以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。(二)、勾股定理的探索,发现过程1、实验操作(探索-猜想):(1)、投影课本图1-1,图1-2的有关直角三角形问题,让学生计算正方形A、B、C的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将C划为4个全等的等腰直角三角形来求等等,各种方法都应给予肯定,并鼓励
6、学生用语言进行表达,引导学生发现正方形A、B、C的面积之间的关系容易发现对于等腰三角形而言满足此关系。这样做有利于学生参与探索,感受学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。(2)接着让学生思考:如果是其它的一般直角三角形,是否也具备这一结论呢?于是投影图1-3,1-4,同样让学生计算正方形的面积,但正方形C的面积不易求出,可先让学生思考、小组合作再利用计算机演示处理过程(割补法)。这样设计不仅有利于突破难点,而且为归纳结论打下基础,让学生体会到观察、猜想、归纳的思路,也让学生的分析问题解决问题的能力在无形中得到提高,这对以后的学习
7、有帮助。2、归纳验证:(1)引导学生议一议,通过小组间合作交流学习,充分调动学生观察、思考、归纳的积极性从而得出勾股定理的雏形。让学生用数学语言概括出一般结论,尽管学生可能讲的不完全正确,但对于培养学生用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接给学生一个结论要好的多。(2)教师又问:是不是所有的直角三角形都具有这种性质呢?是不是所有的三角形都具有这种性质呢?教师用计算机(几何画板动态显示)的优越条件,提供足够充分的典型材料——形状、大小、位置发生变化的各种直角三角形,让学生观察分析,归纳概括,探索出直
8、角三角形三边之间的关系式。并通过与锐角、钝角三角形的对比,强调直角三角形的这个特
此文档下载收益归作者所有