资源描述:
《探索平行线的性质.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、7.2探索平行线的性质(习题课)例2:如图:AD∥BC,∠A=∠C.试说明AB∥DC.ABCFED解:∵AD∥BC(已知)∴∠C=∠CDE(两直线平行,内错角相等)又∵∠A=∠C(已知)∴∠A=∠CDE(等量代换)∴AB∥DC(同位角相等,两直线平行)例3:如图在四边形ABCD中,已知AB∥CD,∠B=600.求∠C的度数。ABCD解:∵AB∥CD(已知),∴∠B+∠C=180°(两直线平行,同旁内角互补).又∵∠B=60°(已知),∴∠C=120°(等式的性质).根据题目的已知条件,无法求出∠A的度数.由已知条件能否求
2、得∠A的度数?例4:如图:已知AB∥CD,求∠A+∠B+∠ACB的度数.解:∵AB∥CD(已知),ABCD21∴∠B=∠2().两直线平行,同位角相等∵∠1+∠2+∠ACB=180°().∠A=∠1().两直线平行,内错角相等平角定义∴∠A+∠B+∠ACB=180°().等量代换例5:如图,一辆汽车经过一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于1420,第二次拐的角∠C是多少度?为什么?BCAD1420?解:∵AB∥CD(已知),∴∠B=∠C(两直线平行,内错角相等).又∵
3、∠B=142°(已知),∴∠B=∠C=142°(等量代换).DCEFAAGG12例6:小明在纸上画了一个角∠A,准备用量角器测量它的度数时,因不小心将纸片撕破,只剩下如图的一部分,如果不能延长DC、FE的话,你能帮他设计出多少种方法可以测出∠A的度数?1.两直线被第三条直线所截,则()A、同位角相等B、内错角相等C、同旁内角互补D、以上都不对D一、选择题练习:2.如果一个角的两边分别平行于另一个角的两边,则这两个角()A、相等B、互补C、相等或互补D、这两个角无数量关系C3.如图,下列判断不正确的是()D一、选择题练习:
4、abcd15283674A.∵∠1=∠2∴∠3=∠4B.∵∠2=∠5∴∠6=∠7C.∵∠5+∠8=180°∴∠1=∠2D.∵∠3+∠4=180°∴∠1=∠21.如图:∵∠1=∠2∴∥()∴∠3=()∠3+=180°()练习:ab内错角相等,两直线平行∠4两直线平行,同位角相等∠5两直线平行,同旁内角互补二、填空题abcd12345练习:二、填空题2.如图:∵∠A+∠D=180°(已知)∴______∥______()∴∠B+∠C=_____()ABDCABCD同旁内角互补,两直线平行180°两直线平行,同旁内角互补1.已
5、知:a∥b,c∥d,∠1=48°求:∠2、∠3、∠4的度数.1234abcd练习:三、解答题2.潜望镜中的两个镜子MN和PQ是相互平行的,光线AB经镜面放射时,∠ABN=∠CBM,∠BCQ=∠DCP.进入的光线AB与反射出的光线CD平行吗?为什么?MPAQBCDN练习:三、解答题