一过三角最值问题演绎的精彩.pdf

一过三角最值问题演绎的精彩.pdf

ID:51210418

大小:47.30 KB

页数:1页

时间:2020-03-21

一过三角最值问题演绎的精彩.pdf_第1页
资源描述:

《一过三角最值问题演绎的精彩.pdf》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、2014年第9期·解题秘笈·涪数外一过三角值问题瘐绎的搞韵江苏省如皋市第一中学孙小龙题目:函数f(O)=2sinO+cosO,其中0∈(0,孚)为过点所以,()-z=2y可化为y一下1+,由图可知,当直线A(1,4)的直线l的倾斜角,若当厂()最大时,直线1恰好与单位圆在第一象限部分相切于点C时即()最大,此与圆(+1)+(y一2)2=r2(r>0)相切,则.时,J}i一-一1,可得j}0c=2即tan0=2。——分析:此题中求.厂()最大值最直接的做法就是使用辅三、向量法令=(2,1),~z=(s

2、in0,cosO),可得Il=x/3-,=1,所助角公式()=、/丁(si埘+c0),令c。s=以,()=·=、/cos

3、考,IlOA一查都以特殊角形式呈现,是否超出了考试要求?有没有其OA一/,,,,,,他做法?经过仔细的研究,发现此题藏新解,此题有精彩,,/笔者呈现以飨读者。一、导数法一图1图2导数法一:四、基本不等式由f(0)=2sin0+eos0求导可得f(0)=2cos0一sin0,令由0∈f0,'iT)可得/()>o,所以():4sinzO+eosZO+f()=0可得tan0=2,由0∈(0,孚),所以0必有一解,记4sin0cos0,其中4sincos=2(2cos)(sin0)4eos20+sin20~

4、为,根据f(0)=2cos0一sin0=eos0(2一tanO),可判断当0∈严()4sin20+eos20+4cos20+sin20=5,当且仅当2eos0=sin0即(0,)时()>O(0)在(O,)上单调递增;当0∈tan0=2时厂:()取得最大值即取得最大值。(O0"IT)时()>0()在(,手)上单调递减;所以当0=新解五:根的分布令2sin0+CSO0=f,结合sin20+COS20=1消去cosO得时取得最大值,此时tan0=2。sin20+(t一2sin0)2=l化简可得5sin20

5、—4tsinO+t2—1=0,令x=导数法二:sin0,可得方程5x2—4tx+t2—1:o(1),因为0∈f0,孚)所以f(O)=2sin0+cos0=2sin0+cos0=、/=4tan20+4tanO+14tanO-3-∈(0,1),>0,由c。sO=t-2sin0>0sin<争(o,争),一=一~tan=£(£>0),所以,,()=/444t-3由题意可知方程(1)在区间(0,3-1上有解。令函数g()=~,令,,=皋},求导可得y=二5x~-4tx+z2_1,对称轴为x=2t(0,t),令

6、,,=0可得t=2,列表可得当f=2即tan=方程(1)在区间(0,1)上有解可推出2时Y取得最大值,此时,()也取得最大值。二、解析法{ig△(0?)>o或g(1.、)>o1<≤、/,由上述过程可司知当方程令X~cosO,y=sinO,则=1,因为0∈f0,1,所以(1)的根为了2t时f取得最大值、/,此时sin0:(2i0+(,y)只能位于单位圆在第一象限的部分(如图1所示),cos0)=-~--tanO=256

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。