欢迎来到天天文库
浏览记录
ID:51007239
大小:27.43 KB
页数:5页
时间:2020-03-08
《数学人教版六年级下册圆柱的体积解决问题例7.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、《圆柱的体积解决问题例7》教案设计一、教学目标(一)知识与技能 用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。(二)过程与方法 经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。(三)情感态度和价值观 通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。二、教学重难点 教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。 教学难点:转化前后的沟通。三、教学准备 每组一个矿泉水瓶(课前统一搜集农夫山泉
2、矿泉水瓶,装有适量清水,水高度分别为6、7、8、9厘米),直尺。 四、教学过程(一)复习旧知,做好铺垫 1.板书:圆柱的体积。 问:圆柱的体积怎么计算?体积和容积有什么区别? 2.揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。(完整板书:用圆柱的体积解决问题。) 【设计意图】通过复习圆柱的体积计算方法以及体积和容积之间的联系和区别,为学习新知做好知识上的准备。(二)探索实践,体验转化过程 1.创设情境,提出问题。 每个小组桌子上有一个没有装满水的矿泉水瓶。 教师:原本这是一瓶装满水的矿
3、泉水,已经喝了一部分,你能根据它来提一个数学问题吗?(随机板书) 预设1:瓶子还有多少水?(剩下多少水?) 预设2:喝了多少水?(也就是瓶子的空气部分。) 预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?) 2.你觉得你能轻松解决什么问题? (1)预设1:瓶子有多少水?(怎么解决?) 学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算出它的体积。 教师:需要用到什么工具?(直尺)你想利用直尺得到哪些数据?(底面直径、水的高度) 小结:知道了底面直径和水的高度,要解决这个问题的确
4、轻而易举。请你准备好直尺,或许等会儿有用哦! (2)预设2:喝了多少水? 学生:喝掉部分的形状是不规则,没有办法计算。 教师:当物体形状不规则时,我们想求出它的体积可以怎么办? 教师相机引导:能否将空气部分变成一个规则的立体图形呢? 学生能说出方法更好,不能说出则引导:我们不妨把瓶子倒过来看看,你发现了什么? 引导学生发现:在瓶子倒置前后,水的体积不变,空气的体积不变,因此,喝了多少水=倒置后空气部分的体积,倒置后空气部分是一个圆柱,要求出它的体积需要哪些数据?(倒置后空气的高度) 小结:这个方法不错,我们利
5、用水的流动性成功地将不规则的空气部分转化成了一个圆柱体,得到所需数据后能求出它的体积。这样一来,第3个问题还难得到你吗? (3)怎么求这个矿泉水瓶的容积?引导学生得出:倒置前水的体积+倒置后空气的体积=瓶子容积。 【设计意图】课本中的例题呈现如下, 例题是直接呈现转化方法的,我是想先屏蔽相关数据信息和方法,通过激发学生解决问题的内在需求,根据自己的生活学习经验来想办法解决,才有了对数学情境的改编,以期通过转化、观察、对比,让学生发现倒置前后两部分立体图形之间的相同点,沟通两部分体积之间的内在联系,顺利地把新知转化为旧
6、知,分散了难点,从而找到解决问题的方法。 3.小组合作,测量计算。 (矿泉水瓶内直径为6cm) 教师:方法找到了,接下来能否正确求出瓶子的容积就看你们的了! (1)课件出示: 一个内直径是()的瓶子里,水的高度是(),把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是()。这个瓶子的容积是多少?(测量时取整厘米数) (2)四人小组合作: A.组长安排好分工: 要量出所需数据,其他组员要监督好测量方法与结果是否正确,要按要求把题目填完整。 B.组内互相说一说:倒置前后哪两部分的体积不变? 矿泉水瓶的容积=()+
7、()。 C.做好以上准备工作后,利用所得数据独立计算,再组内校对结果是否正确。 【设计意图】这一环节让学生大胆动手操作,在实践中不断发现解决问题,在同伴的交流中拓展自己的思维,让学生在合作中建立协作精神。 4.交流反馈。 教师巡查,选择矿泉水瓶中原有水高度分别6、7、8、9厘米的同学板演。 瓶中水高度为6厘米的: 3.14×(6÷2)2×6+3.14×(6÷2)2×13 =3.14×9×(6+13) ≈537(毫升)。 瓶中水高度为7厘米的: 3.14×(6÷2)2×7+3.14×(6÷2)2×12
8、=3.14×9×(7+12) ≈537(毫升)。 瓶中水高度为8厘米的: 3.14×(6÷2)2×8+3.14×(6÷2)2×11 =3.14×9×(8+11)5.回顾与反思。师:回顾解决这个问题的方法和过程,你有哪些收获?学生可能谈到利用体积不变的特性,把不规则物体转化成规则图形来计算。也可能
此文档下载收益归作者所有