欢迎来到天天文库
浏览记录
ID:50991657
大小:898.00 KB
页数:25页
时间:2020-03-17
《直线与圆的位置关系课件1.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、24.2.2直线和圆的位置关系(1)点和圆的位置关系有哪几种?用数量关系怎样表示呢?设点到圆心的距离为d,圆的半径为r,则:复习回顾点在圆外d>r;点在圆上d=r;点在圆内d2、平线)●O●O●O(2)直线和圆有唯一个公共点,叫做直线和圆相切,这条直线叫圆的切线,这个公共点叫切点。(1)直线和圆有两个公共点,叫做直线和圆相交,这条直线叫圆的割线,这两个公共点叫交点。(3)直线和圆没有公共点时,叫做直线和圆相离。一、直线与圆的位置关系(用公共点的个数来区分)相离相切相交012切点交点切线割线适时小结:直线与圆的位置关系相交相切相离上述变化过程中,除了公共点的个数发生了变化,还有什么量在改变?你能否用数量关系来判别直线与圆的位置关系?2、连结直线外一点与直线上所有点的线段中,最3、短的是______?1.直线外一点到这条直线的垂线段的长度叫点到直线的距离。垂线段a.AD相关知识点回忆什么叫点到直线的距离?直线和圆相交drrd∟rd∟rd数形结合思想:位置关系数量关系二、直线和圆的位置关系(用圆心o到直线l的距离d与圆的半径r的关系来区分)总结:判定直线与圆的位置关系的方法有__种:(1)根据定义,由________________的个数来判断;(2)根据性质,由___________________的关系来判断。在实际应用中,常采用第二种4、方法判定。两直线与圆的公共点圆心到直线的距离d与半径r观察太阳落山的照片,在太阳落山的过程中,太阳与地平线(直线a)经历了哪些位置关系的变化?a(地平线)观察1、已知圆的直径为13cm,设直线和圆心的距离为d:3)若d=8cm,则直线与圆______,直线与圆有____个公共点.2)若d=6.5cm,则直线与圆______,直线与圆有____个公共点.1)若d=4.5cm,则直线与圆,直线与圆有____个公共点.3)若AB和⊙O相交,则.2、已知⊙O的半径为5cm,圆心O与直线AB的距离为d,根据条5、件填写d的范围:1)若AB和⊙O相离,则;2)若AB和⊙O相切,则;相交相切相离d>5cmd=5cmd<5cm即时练习0cm≤2103、如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,以C为圆心的圆与AB相切,则这个圆的半径是cm。4、直线L和⊙O有公共点,则直线L与⊙O().A、相离;B、相切;C、相交;D、相切或相交。12/5D例:在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2cm;(2)r=2.6、4cm(3)r=3cm.BCA43分析:要了解AB与⊙C的位置关系,只要知道圆心C到AB的距离d与r的关系.已知r,只需求出C到AB的距离d。Dd解:过C作CD⊥AB,垂足为D在△ABC中,AB=5根据三角形的面积公式有∴即圆心C到AB的距离d=2.4cm所以(1)当r=2cm时,有d>r,因此⊙C和AB相离。BCA43Dd(2)当r=2.4cm时,有d=r,因此⊙C和AB相切。(3)当r=3cm时,有d7、圆心的距离为以下值时,直线和圆有几个公共点?为什么?(1)4.5cmA0个;B1个;C2个;答案:C(2)6.5cm答案:B(3)8cm答案:AA0个;B1个;C2个;A0个;B1个;C2个;自我检测2、如图,已知∠BAC=30度,M为AC上一点,且AM=5cm,以M为圆心、r为半径的圆与直线AB有怎样的位置关系?为什么?(1)r=2cm(2)r=4cm(3)r=2.5cmDMABCA.(-3,-4)Oxy已知⊙A的直径为6,点A的坐标为(-3,-4),则x轴与⊙A的位置关系是_____,y轴8、与⊙A的位置关系是_____。BC43相离相切-1-1拓展.(-3,-4)OxyBC43-1-1若⊙A要与x轴相切,则⊙A该向上移动多少个单位?若⊙A要与x轴相交呢?思考讨论D在Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,以C为圆心,r为半径作圆。①当r满足时,直线AB与⊙C相离。②当r满足时,直线AB与⊙C相切。③当r满足时,直线AB与⊙C相交。12BCA130﹤r﹤r=r﹥④当r满足时,线段AB与⊙C只有一个公共点。或5﹤r≤12r=5CD=cm小
2、平线)●O●O●O(2)直线和圆有唯一个公共点,叫做直线和圆相切,这条直线叫圆的切线,这个公共点叫切点。(1)直线和圆有两个公共点,叫做直线和圆相交,这条直线叫圆的割线,这两个公共点叫交点。(3)直线和圆没有公共点时,叫做直线和圆相离。一、直线与圆的位置关系(用公共点的个数来区分)相离相切相交012切点交点切线割线适时小结:直线与圆的位置关系相交相切相离上述变化过程中,除了公共点的个数发生了变化,还有什么量在改变?你能否用数量关系来判别直线与圆的位置关系?2、连结直线外一点与直线上所有点的线段中,最
3、短的是______?1.直线外一点到这条直线的垂线段的长度叫点到直线的距离。垂线段a.AD相关知识点回忆什么叫点到直线的距离?直线和圆相交drrd∟rd∟rd数形结合思想:位置关系数量关系二、直线和圆的位置关系(用圆心o到直线l的距离d与圆的半径r的关系来区分)总结:判定直线与圆的位置关系的方法有__种:(1)根据定义,由________________的个数来判断;(2)根据性质,由___________________的关系来判断。在实际应用中,常采用第二种
4、方法判定。两直线与圆的公共点圆心到直线的距离d与半径r观察太阳落山的照片,在太阳落山的过程中,太阳与地平线(直线a)经历了哪些位置关系的变化?a(地平线)观察1、已知圆的直径为13cm,设直线和圆心的距离为d:3)若d=8cm,则直线与圆______,直线与圆有____个公共点.2)若d=6.5cm,则直线与圆______,直线与圆有____个公共点.1)若d=4.5cm,则直线与圆,直线与圆有____个公共点.3)若AB和⊙O相交,则.2、已知⊙O的半径为5cm,圆心O与直线AB的距离为d,根据条
5、件填写d的范围:1)若AB和⊙O相离,则;2)若AB和⊙O相切,则;相交相切相离d>5cmd=5cmd<5cm即时练习0cm≤2103、如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,以C为圆心的圆与AB相切,则这个圆的半径是cm。4、直线L和⊙O有公共点,则直线L与⊙O().A、相离;B、相切;C、相交;D、相切或相交。12/5D例:在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2cm;(2)r=2.
6、4cm(3)r=3cm.BCA43分析:要了解AB与⊙C的位置关系,只要知道圆心C到AB的距离d与r的关系.已知r,只需求出C到AB的距离d。Dd解:过C作CD⊥AB,垂足为D在△ABC中,AB=5根据三角形的面积公式有∴即圆心C到AB的距离d=2.4cm所以(1)当r=2cm时,有d>r,因此⊙C和AB相离。BCA43Dd(2)当r=2.4cm时,有d=r,因此⊙C和AB相切。(3)当r=3cm时,有d7、圆心的距离为以下值时,直线和圆有几个公共点?为什么?(1)4.5cmA0个;B1个;C2个;答案:C(2)6.5cm答案:B(3)8cm答案:AA0个;B1个;C2个;A0个;B1个;C2个;自我检测2、如图,已知∠BAC=30度,M为AC上一点,且AM=5cm,以M为圆心、r为半径的圆与直线AB有怎样的位置关系?为什么?(1)r=2cm(2)r=4cm(3)r=2.5cmDMABCA.(-3,-4)Oxy已知⊙A的直径为6,点A的坐标为(-3,-4),则x轴与⊙A的位置关系是_____,y轴8、与⊙A的位置关系是_____。BC43相离相切-1-1拓展.(-3,-4)OxyBC43-1-1若⊙A要与x轴相切,则⊙A该向上移动多少个单位?若⊙A要与x轴相交呢?思考讨论D在Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,以C为圆心,r为半径作圆。①当r满足时,直线AB与⊙C相离。②当r满足时,直线AB与⊙C相切。③当r满足时,直线AB与⊙C相交。12BCA130﹤r﹤r=r﹥④当r满足时,线段AB与⊙C只有一个公共点。或5﹤r≤12r=5CD=cm小
7、圆心的距离为以下值时,直线和圆有几个公共点?为什么?(1)4.5cmA0个;B1个;C2个;答案:C(2)6.5cm答案:B(3)8cm答案:AA0个;B1个;C2个;A0个;B1个;C2个;自我检测2、如图,已知∠BAC=30度,M为AC上一点,且AM=5cm,以M为圆心、r为半径的圆与直线AB有怎样的位置关系?为什么?(1)r=2cm(2)r=4cm(3)r=2.5cmDMABCA.(-3,-4)Oxy已知⊙A的直径为6,点A的坐标为(-3,-4),则x轴与⊙A的位置关系是_____,y轴
8、与⊙A的位置关系是_____。BC43相离相切-1-1拓展.(-3,-4)OxyBC43-1-1若⊙A要与x轴相切,则⊙A该向上移动多少个单位?若⊙A要与x轴相交呢?思考讨论D在Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,以C为圆心,r为半径作圆。①当r满足时,直线AB与⊙C相离。②当r满足时,直线AB与⊙C相切。③当r满足时,直线AB与⊙C相交。12BCA130﹤r﹤r=r﹥④当r满足时,线段AB与⊙C只有一个公共点。或5﹤r≤12r=5CD=cm小
此文档下载收益归作者所有