欢迎来到天天文库
浏览记录
ID:50720827
大小:1004.00 KB
页数:13页
时间:2020-03-14
《2015江苏高考数学卷word版(理)及答案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
201★此卷上交考点保存★姓名准考证号5年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。本卷满分为160分。考试时间为120分钟。考试结束后,请将本试卷和答题卡一并交回。2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效。5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。参考公式:棱锥的体积,其中为底面积,为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合,,则集合中元素的个数为▲.2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为▲.3.设复数z满足(i是虚数单位),则z的模为▲.4.根据如图所示的伪代码,可知输出的结果S为▲.5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为▲.6.已知向量,,若,则m-n的值为▲.7.不等式的解集为▲.8.已知,,则的值为▲.9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为▲.10.在平面直角坐标系中,以点为圆心且与直线 相切的所有圆中,半径最大的圆的标准方程为▲.11.数列满足,且(),则数列的前10项和为▲.12.在平面直角坐标系中,为双曲线右支上的一个动点。若点到直线的距离对c恒成立,则是实数c的最大值为▲.13.已知函数,,则方程实根的个数为▲.14.设向量,则的值为▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15、(本小题满分14分)在△ABC中,已知(1)求BC的长;(2)求的值。16、(本小题满分14分)如图,在直三棱柱中,已知.设的中点为D,求证:(1)(2)17、(本小题满分14分) 某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到的距离分别为5千米和40千米,点N到的距离分别为20千米和2.5千米,以所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数(其中a,b为常数)模型.(I)求a,b的值;(II)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式,并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.18、(本小题满分16分)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.19、(本小题满分16分) 已知函数。(1)试讨论的单调性;(2)若(实数c是a与无关的常数),当函数有三个不同的零点时,a的取值范围恰好是,求c的值。20、(本小题满分16分)设是各项为正数且公差为d的等差数列(1)证明:依次成等比数列(2)是否存在,使得依次成等比数列,并说明理由(3)是否存在及正整数,使得依次成等比数列,并说明理由★此卷上交考点保存★姓名准考证号绝密★启用前 2015年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共2页,均为非选择题(第21题~第23题)。本卷满分为40分。考试时间为30分钟。考试结束后,请将本试卷和答题卡一并交回。2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效。5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。21.[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)如图,在中,,的外接圆圆O的弦交于点D求证:∽(第21-A题)B.[选修4-2:矩阵与变换](本小题满分10分)已知,向量是矩阵的属性特征值的一个特征向量,矩阵以及它的另一个特征值。C.[选修4-4:坐标系与参数方程](本小题满分10分) 已知圆C的极坐标方程为,求圆C的半径.D.[选修4-5:不等式选讲](本小题满分10分)解不等式【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在四棱锥中,已知平面,且四边形为直角梯形,,(1)求平面与平面所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成角最小时,求线段BQ的长23.(本小题满分10分)已知集合,设,令表示集合所含元素个数.(1)写出的值;(2)当时,写出的表达式,并用数学归纳法证明。
此文档下载收益归作者所有
举报原因
联系方式
详细说明
内容无法转码请点击此处