欢迎来到天天文库
浏览记录
ID:50719577
大小:381.01 KB
页数:7页
时间:2020-03-07
《向量(论文) 向量在高中数学中的几个妙用.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、向量在高中数学中的几个妙用引言:平面向量是高中数学的新增内容,也是新高考的一个亮点。正因为如此,在高三专题复习课上,我们以求在教与学的过程中提高学生学习向量的兴趣,让学生树立并应用向量的意识。背景:向量知识在许多国家的中学数学教材中,早就成了一个基本的教学内容。在我国全面实施新课程后,向量虽然已进入中学,但仍处于起步的阶段。向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。而在高中数学体系中,解析几何占有着很重要的
2、地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。但实际情况是很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题,学生应用向量的意识不强.在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。正因为如此,本节课这样设计:1、教育家赞可夫说“要以知识本身吸引学生学习,使学生感到认识新事物的乐趣,体验克服困难的喜悦”;教育心理学认为:思维是从提出问题开始
3、的;美国心理学家贾德通过实验证明“学习迁移的发生应有一个先决条件,就是学生需掌握原理,形成类比,才能让迁移到具体的类似学习中”。因此首先通过两个旧问题的引入解决,让学生体会向量的工具性特点,体会向量解题的优越性。2、通过例3、例4两个问题的探究解决,由此让学生发现,用向量法的最大优点是思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。向量是形与数的高度统一,它
4、集几何图形的直观与代数运算的简洁于一身。是高中数学新增加的内容,在作用上它取代了以往复数在高中数学教材中的地位,但从目前的使用情况来看,向量的作用要远远大于复数。一个复数所对应的点只能在平面上,而向量却有平面向量和空间向量之分,这一点在与几何(尤其是立体几何)的联系上表现得更加突出。向量在数学,力学,物理学和工程技术中应用很广泛,它具有代数形式和几何形式的“双重身份”,能融数形于一体,能与中学数学教学内容中的许多主干知识相结合,形成知识交汇点。向量方法在解决几何问题时充分体现了它的优越性,平面向量就具有较强的工具性作用,向量方法不仅可以用
5、来解决不等式、三角、复数、物理、测量等某些问题,还可以简捷明快地解决平面几何许多常见证明(平行、垂直、共线、相切、角相等)与求值(距离、角、比值等)问题.不难看出向量法应用于平面几何中时,它能将平面几何许多问题代数化、程序化从而得到有效的解决,体现了数学中数与形的完美结合。向量法是将几何问题代数化,用代数方法研究几何问题。用空间向量解决立体几何中的这些问题,其独到之处,在于用向量来处理空间问题,淡化了传统方法的有“形”到“形”的推理过程,使解题变得程序化。那么解立体几何题时就可以用向量方法,对某些传统性较大,随机性较强的立体几何问题,引入
6、向量工具之后,可提供一些通法。由于向量具有几何形式和代数形式的“双重身份”,使向量与几何之间有着密切联系。向量是近代数学中重要和基础的数学概念之一,它既是几何对象也是代数对象,因而成为数形结合的桥梁,成为沟通代数、几何、三角的得力工具。向量的概念从大量的生活实例和丰富的物理素材中抽象出来,反过来,它的理论和方法又成为解决生活实际问题和物理学重要工具.它之所以有用,关键是它具有一套良好的运算性质,可以使复杂问题简单化、直观化,使代数问题几何化、几何问题代数化。正是由于向量所特有的数形二重性,使它成为中学数学知识的一个交汇点,成为联系多项内容
7、的媒介,在高中数学教学内容中有广泛的应用。用向量坐标法求角时要注意善于利用已知几何体的特点,寻找直线与平面的垂直关系,再设法在平面内找到直线与直线垂直,以便建立空间直角坐标系后方便求相关点的坐标。从上面的例子我们可以看到,向量解题的优势就在于只运用了向量公式的简单变形就解决了一个通过繁琐的立体几何分析方能解决的问题。这是对笛卡尔“变实际问题为数学问题,再变数学问题为方程问题,然后只需求解方程便可使问题得以解决”这一数学哲学思想的完美体现。用向量法解决立体几何问题的方式有两种:一是直接用向量的代数式运算,二是用向量的坐标运算。一般来说,向量
8、的坐标运算,思维量更少,运算技巧更低,更容易掌握,因此这也是我们常用的向量方法。若所给图形不容易建立空间直角坐标系,我们也可以用向量的代数式运算来解决问题,但其技巧性相对较高,对学生逻辑推理能
此文档下载收益归作者所有