高中数学必修4 任意角的三角函数.doc

高中数学必修4 任意角的三角函数.doc

ID:50719327

大小:490.95 KB

页数:6页

时间:2020-03-14

高中数学必修4 任意角的三角函数.doc_第1页
高中数学必修4 任意角的三角函数.doc_第2页
高中数学必修4 任意角的三角函数.doc_第3页
高中数学必修4 任意角的三角函数.doc_第4页
高中数学必修4 任意角的三角函数.doc_第5页
资源描述:

《高中数学必修4 任意角的三角函数.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、任意角的三角函数知识与技能:1.掌握任意角的三角函数的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.记住三角函数的定义域、值域,诱导公式(一)。过程与方法:1理解并掌握任意角的三角函数的定义;2树立映射观点,正确理解三角函数是以实数为自变量的函数;3通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。2学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;教学重点:三角函数的定义;三角函数的定义域及其确定方法;三角函数值在各个象限内的符号以及诱导公式一教

2、学难点:任意角三角函数的定义.一.复习引入思考:我们已经学过锐角三角函数,知道它们都是以锐角为自变量,以比值为函数值的函数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?结论:在Rt△ABC中,设A对边为a,B对边为b,C对边为c,锐角A的正弦,余弦,正切依次为:锐角三角函数就是以锐角为自变量,以比值为函数值的函数思考1:角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义.你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?如图,设锐角的顶点与原点重合,始边与轴的正

3、半轴重合,那么它的终边在第一象限.在的终边上任取一点,它与原点的距离.过作轴的垂线,垂足为,则线段的长度为,线段的长度为.则;;.思考2:对于确定的角,这三个比值是否会随点在的终边上的位置的改变而改变呢?为什么?6---------------------------------------------------------------------------------------------------------------------------------------------根据相似

4、三角形的知识,对于确定的角,三个比值不以点P在的终边上的位置的改变而改变大小.我们可以将点P取在使线段的长的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:;;.单位圆:在直角坐标系中,我们称以原点为圆心,以单位长度为半径的圆称为单位圆.上述P点就是的终边与单位圆的交点,锐角的三角函数可以用单位圆上点的坐标表示.二新课讲授1.任意角的三角函数的定义结合上述锐角的三角函数值的求法,我们应如何求解任意角的三角函数值呢?显然,我们可以利用单位圆来定义任意角的三角函数.如图,设是一个任意

5、角,它的终边与单位圆交于点,那么:(1)叫做的正弦(sin),记做,即;(2)叫做的余弦(cos),记做,即;(3)叫做的正切(tan),记做,即.思考3:在上述三角函数定义中,自变量是什么?对应关系有什么特点,函数值是什么?说明:(1)当时,的终边在轴上,终边上任意一点的横坐标都等于,所以无意义,除此情况外,对于确定的值,上述三各值都是唯一确定的实数.(2)当是锐角时,此定义与初中定义相同;当不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点,从而就必然能够最终

6、算出三角函数值.(3)正弦,余弦,正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将这种函数统称为三角函数.2.利用定义求角的三角函数值例1.求的正弦,余弦和正切值.解:在直角坐标系中,作,6---------------------------------------------------------------------------------------------------------------------------------------------的终边

7、与单位圆的交点坐标为,所以思考:如果将变为呢?例2.已知角的终边过点,求角的正弦,余弦和正切值.思考:如何根据例题1解答思考:一般的,设角终边上任意一点的坐标为(x,y),它与原点的距离为r,则,你能自己给出证明吗?思考如果将题目中的坐标改为(-3a,-4a),题目又应该怎么做?3.三角函数的定义域和函数值符号探究:请根据上述任意角的三角函数定义,先将正弦,余弦和正切函数在弧度制下的定义域填入下表,再将这三种函数的值再各象限的符号填入下表函数定义域例3.求证:当下列不等式组成立时,角为第三象限角,反

8、之也对证明:如果成立,那么角的终边可能位于第三或第四象限,也可能与6---------------------------------------------------------------------------------------------------------------------------------------------轴的非负半轴重合;如果,所以角的终边可能位于第一或第三象限所以,角的终边只能位于第三象限,时第三象限角反过来,请同学们自己

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。