欢迎来到天天文库
浏览记录
ID:39456010
大小:1022.31 KB
页数:20页
时间:2019-07-03
《高中数学必修4任意角的三角函数》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、任意角的三角函数更多资源xiti123.taobao.com角的范围已经推广,那么对任一角是否也能像锐角一样定义其四种三角函数呢?我们已经学习过锐角三角函数,知道它们都是以锐角为自变量,以比值为函数值,定义了角 的正弦、余弦、正切、余切的三角函数,本节课我们研究当角 是一个任意角时,其三角函数的定义及其几何表示.任意角的三角函数定义设 是任意角, 的终边上任意一点 的坐标是 ,当角 在第一、二、三、四象限时的情形,它与原点的距离为 ,则 .任意角的三角函数所在象限的课件①比值 叫做 的正弦,记作 ,即 .②比值 叫做 的余弦
2、,记作 ,即 .定义:③比值 叫做 的正切,记作 ,即 .提问:对于确定的角 ,这三个比值的大小和 点在角 的终边上的位置是否有关呢?观察当 时, 的终边在 轴上,此时终边上任一点 的横坐标 都等于0,所以 无意义,除此之外,对于确定的角 ,上面三个比值都是惟一确定的.把上面定义中三个比的前项、后项交换,那么得到另外三个定义.④比值 叫做 的余切,记作 ,则 .⑤比值 叫做 的正割,记作 ,则 .⑥比值 叫做 的余割,记作 ,则 .我们把正弦、余弦,正切、余切,正割及余割都看成是以角为自变量,以比值为
3、函数值的函数,以上六种函数统称三角函数.三角函数是以实数为自变量的函数→角(其弧度数等于这个实数)→三角函数值(实数)实数三角函数的一种几何表示利用单位圆有关的有向线段,作出正弦线,余弦线,正切线.三角函数的几何表示课件当角 的终边不在坐标轴上时,我们把 , 都看成带有方向的线段,这种带方向的线段叫有向线段.由正弦、余弦、正切函数的定义有:当角 的终边在 轴上时,正弦线、正切线分别变成一个点;这几条与单位圆有关的有向线段叫做角 的正弦线、余弦线、正切线.当角 的终边在 轴上时,弦线变成一个点,正切线不存在.例1已知角 的终边经过 ,求 的六个三角函数值
4、.提问:分 , 两种情形讨论.求 的六个三角函数值呢?若将 改为 ,如何例2(1) ;(2) ;(3) .求下列各角的六个三角函数值例3作出下列各角的正弦线,余弦线,正切线.(1) ;(2) .例4求证:当 为锐角时, .课堂练习(1)角 的终边在直线 上,求 的六个三角函数值.(2)角 的终边经过点 ,求,, , 的值.(3)说明 的理由 .(2)函数 的定义域是().A.B.C.D.反馈训练(1)若角 终边上有一点 ,则下列函数值不存在的是().A.B.C
5、.D.(4)若角 的终边过点 ,且 ,(3)若 , 都有意义,则.则 .本课小结利用定义求三角函数值,首先要建立直角坐标系,角α顶点和始边要按既定的位置设置.角的三角函数定义式,其实是比例的化身,它的背后是相似形在支称着,不过这个定义具有一般性,如轴上角的三角函数,如果没有定义作为论据,欲求其函数性就不是很容易.分类讨论(角位置)是三角函数求值过程中,使用频率非常高的一个数学思想,而分类标准往往是四个象限及四个坐标半轴.更多资源xiti123.taobao.com
此文档下载收益归作者所有