欢迎来到天天文库
浏览记录
ID:50679316
大小:269.50 KB
页数:8页
时间:2020-03-13
《课堂讲义菱形.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、:1.平行四边形性质:平行四边形的对边______;平行四边形的对角______,邻角______;平行四边形的对角线____________。2.平行四边形判定:___组对边分别的四边形叫平行四边形.__组对边分别的四边形是平行四边形.___组对边的四边形是平行四边形.对角线的四边形是平行四边形.3.矩形的定义:有一个角是的平行四边形,叫做矩形。4.矩形性质:矩形具有的所有性质,还具有特殊性质5.矩形判定方法:结合图形说出它们的几何语言。①②③6.直角三角形斜边上的中线等于.已知:如图,在平行四边形ABCD中,E为CD中点,三角形CBE是等边三角形,求证:四边形ABCD是
2、矩形。一.菱形的定义:___________________________________________,菱形是特殊的___________________________________________。二.菱形的性质:边:____________________________________对角线:________________________________跟踪训练:1.已知菱形的对角线长分别是6cm和8cm,则这个菱形的边长为cm.面积为cm2。2.菱形的周长为24cm,相邻两内角比为1:2,则其对角线长分别为.3.已知:如图,四边形ABCD是菱形,G是AB
3、上任一点,DG交AC于点E。求证:∠AGD=∠CBE4.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,求∠CPB的度数5.已知:如图,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.(1)求证:AE=AF.(2)若∠B=60°,点E,F分别为BC和CD的中点,求证:△AEF为等边三角形.三.菱形的判定: ____________________________________________________________________________________________________跟踪训练:
4、⒈下列条件中不能用来判定四边形是菱形的是()A.AB=CD,AB=AD,BC=CDB.∠A=∠C,∠B=∠D,AC⊥BDC.AB=CD,AD=BC,AC⊥BDD.OA=OB=OC=OD(O是对角线交点)2、如图是一个利用四边形的不稳定性制作的菱形晾衣架,已知其中每个菱形的边长为20cm,墙上悬挂晾衣架的两个铁钉之间的距20cm,则∠1等于()A.90°B.60°C.45°D.30°3、下列条件中,能判断四边形是菱形的是()A、两条对角线相等。B、两条对角线互相垂直。C、两条对角线相等且互相垂直。D、两条对角线互相垂直平分。4、菱形的一边与等腰直角三角形的直角边等长,若菱形的
5、一个角是30°,则菱形和三角形的面积之比是()A.1:2B.2:3C.1:1D.2:15、菱形的两个邻角的度数之比是1:3,边长是,则高.6、菱形的面积是48cm2,而对角线长之比是2:3,则其边长.7、判断:(1)对角线互相平分且邻边相等的四边形是菱形.(2)两组对边分别平行且一组邻边相等的四边形是菱形.(3)邻角相等的四边形是菱形.(4)有一组邻边相等的四边形是菱形.(5)两组对角分别相等且一组邻边相等的四边形是菱形.(6)对角线互相垂直的四边形是菱形.(7)对角线互相垂直平分的四边形是菱形.8、如图□ABCD的对角线AC、BD交于点O,AB=5,AO=4,BO=3,⑴
6、求证□ABCD是菱形.⑵求□ABCD的面积。AFCDBE第9题图9、如图,在中,点D、E、F分别在边、、上,且,.下列四种说法:①四边形是平行四边形;②如果,那么四边形是矩形;③如果平分,那么四边形是菱形;④如果且,那么四边形是菱形.其中,正确的有.(只填写序号)10、如图,在△ABC中,AD⊥BC,垂足为D,点E,F分别是AB,AC的中点。当△ABC满足什么条件时,四边形AEDF为菱形?请说明理由。11、如图,矩形ABCD的对角线AC,BD相交于点O,BE∥AC,CE∥DB.四边形OBEC是菱形吗?为什么?12、如图在四边形ABCD中,点E、F是对角线上BD的两点,且BE
7、=DF。(1)若四边形AECF是平行四边形,求证:四边形ABCD是平行四边形;(2)若四边形AECF是菱形,那么四边形ABCD也是菱形吗?为什么?(3)若四边形AECF是矩形,试判断四边形ABCD是否为矩形,为什么?13、如图5,在平行四边形ABCD中,BE平分∠ABC交AD于点E,DF平分∠ADC交BC于点DF。求证:(1)△ABE≌△CDF(2)若BD⊥EF,则判断四边形EBFD是什么特殊四边形,请证明你的结论。1.如图所示中的四边形ABCD是菱形,点E,F在BD上,BE=DF。求证:四边形AFCE是菱形。2.
此文档下载收益归作者所有