等差数列课件(1).ppt

等差数列课件(1).ppt

ID:50668738

大小:493.50 KB

页数:19页

时间:2020-03-14

等差数列课件(1).ppt_第1页
等差数列课件(1).ppt_第2页
等差数列课件(1).ppt_第3页
等差数列课件(1).ppt_第4页
等差数列课件(1).ppt_第5页
资源描述:

《等差数列课件(1).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、等差数列复习回顾数列的定义,通项公式,递推公式按一定次序排成的一列数叫做数列。一般写成a1,a2,a3,…,an,…,简记为{an}。如果数列{an}的第n项an与n的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。如果已知数列{an}的第1项(或前几项),且任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式来表示,那么这个公式叫做这个数列的递推公式。我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,10,15,20,…①2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目。该项

2、目共设置了7个级别,其中较轻的4个级别体重组成数列(单位:kg):48,53,58,63.②水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5.③我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:本利和=本金×(1+利率×存期)。例如,按活期存入1

3、0000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个数列:10072,10144,10216,10288,10360.④从第二项起,后一项与前一项的差是5。从第二项起,后一项与前一项的差是5。从第二项起,后一项与前一项的差是-2.5。从第二项起,后一项与前一项的差是72。请同学们思考,这四个数列有何共同特点?等差数列的定义:一般地,如果一个数列{an},从第2项起每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差。公差通常用字母d表示。定义的符号表示是:an-a

4、n-1=d(n≥2,n∈N*),这就是数列的递推公式。数列{an}为等差数列an+1-an=d或an+1=an+d那么对于以上四组等差数列,它们的公差依次是5,5,-2.5,72。是不是不是练习一判断下列各组数列中哪些是等差数列,哪些不是?如果是,写出首项a1和公差d,如果不是,说明理由。(1)1,3,5,7,…(2)9,6,3,0,-3…(3)-8,-6,-4,-2,0,…(4)3,3,3,3,…(6)15,12,10,8,6,…思考:在数列(1),a100=?我们该如何求解呢?是是是a1=1,d=2a1=9,d=-3a1=-8,d=

5、2a1=3,d=0通项公式的推导设一个等差数列{an}的首项是a1,公差是d,则有:a2-a1=d,a3-a2=d,a4-a3=d,…所以有:a2=a1+d,a3=a2+d=(a1+d)+d=a1+2da4=a3+d=(a1+2d)+d=a1+3dan=a1+(n-1)d当n=1时,上式也成立。所以等差数列的通项公式是:an=a1+(n-1)d问an=?通过观察:a2,a3,a4都可以用a1与d表示出来;a1与d的系数有什么特点?(a2-a1)+(a3-a2)+(a4-a3)+…+(an-an-1)=(n-1)d∴an-a1=(n-1)d

6、即an=a1+(n-1)da2-a1=d,a3-a2=d,a4-a3=d,…an-an-1=da1、an、n、d知三求一例题例1(1)求等差数列8,5,2,…的第20项;(2)判断-401是不是等差数列–5,-9,-13…的项?如果是,是第几项,如果不是,说明理由。解:(1)由题意得:a1=8,d=5-8=-3,n=20∴这个数列的通项公式是:an=a1+(n-1)d=-3n+11∴a20=11-3×20=-49(2)由题意得:a1=-5,d=-9-(-5)=-4∴这个数列的通项公式是:an=-5+(n-1)×(-4)=-4n-1令-40

7、1=-4n-1,得n=100∴-401是这个数列的第100项。例2在等差数列{an}中,已知a5=10,a12=31,求首项a1与公差d.这是一个以a1和d为未知数的二元一次方程组,解之得:解:由题意得:∴这个数列的首项a1是-2,公差d=3.小结:已知数列中任意两项,可求出首项和公差,主要是联立二元一次方程组。请同学们做以下练习。例题从以上分析可以看出:d>0⇔等差数列为递增数列;d=0⇔等差数列为常数列;d<0⇔等差数列为递减数列.课时小结通过本课时的学习,首先要理解和掌握等差数列的定义及数学表达式:an+1-an=d(n≥1且n∈N

8、*);其次要会推导等差数列的通项公式an=a1+(n-1)d(n≥1).本课时的重点是通项公式的灵活应用,知道an,a1,d,n中任意三个,应用方程的思想,可以求出另外一个。已知等差数列{an

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。