欢迎来到天天文库
浏览记录
ID:50626417
大小:484.00 KB
页数:11页
时间:2020-03-12
《一元二次方程二次函数单元练习.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、单元测验双向细目表(参考样例)假定:Ø该单元由五个小主题组成。Ø本张试卷的题型为:选择题、辨析题、案例分析题。其中:Ø选择题:20道。每题2分,共40分Ø辨析题:5道。每题4分,共20分Ø案例分析题:2道,每题20分,共40分【注】表中数字斜杠左边为题数,斜杠右边为分数。题型主题难度选择题辨析题案例分析题小计合计难中易难中易难中易主题一2/42/41/45/1227/100主题二2/42/41/45/12主题三2/42/41/45/12主题四2/42/41/41/206/32主题五2/42/41/41/206/32小计难6/121/41/208/3627/10
2、0中8/162/81/2011/44易6/122/88/20合计20/405/202/4027/100如果按该表出试卷:一、做到全覆盖。二、重点在主题四和主题五(这两主题各出6道题,各占32分,比重最大)。二、中等难度的题比重较大。题数和所占分数都多于难题和容易的题。三、难题和容易的题相比,容易的题所占分值少了一些,必要时可适当调整。单元测试卷及组卷说明参考表单基本信息学科数学年级初一教师赵光义单位北城中学课题一元二次方程、二次函数单元测试卷一元二次方程、二次函数单元练习数学试卷(试卷总分:150考试时间:120分钟)一、选择题(本大题共10小题,每小题3分,
3、满分30分)1.关于x的方程是一元二次方程,则m的取值是()A.任意实数B.m≠1C.m≠-1D.m≠02.一元二次方程的二次项系数、一次项系数、常数项分别是( )A.-5,3,12B.3,-5,12C.-3,5,-12D.3,-5,-123.由二次函数,可知()A.其图象的开口向下B.其图象的对称轴为直线C.其最小值为1D.当时,y随x的增大而增大4.方程的解是()A.B.C. D.5.用配方法解方程,原方程应变为()A.B.C.D.6.抛物线向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是()A.B.C.D.7.一元二次方程的根的情况为(
4、)A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根8.二次函数的图象如图所示.当y<0时,自变量x的取值范围是().A.-1<x<3B.x<-1C.x>3D.x<-1或x>39.若m,n是方程的两根则.的值为()A.2014B.2013C.2012D.201110.关于x的一元二次方程没有实数根,则抛物线的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(本大题共8小题,每小题3分,满分24分)11.已知关于的方程的一个根是,则_______.12.当m=_____时,抛物线的对称轴是y轴.13.二次函数的图象
5、过原点,则m的值是______.14.如果关于的一元二次方程有两个不相等的实数根,那么的取值范围是.15.有一个人患了流感,经过两轮传染后共有144人患了流感,若设平均每轮传染x人,则可列方程为.16.一元二次方程的两根之和为,则两根之积为_________.17.抛物线的图像如图(实线)所示,则它关于轴对称的抛物线(虚线)的关系式是__________.18.已知y=,无能x取任何实数,这个式子都有意义,试求c的取值范围.三、解答题(本大题共10小题,满分96分)19.解方程:(本题10分)(1)(2)20.(本题8分)已知关于的方程有两个实数根﹣2,.求,
6、的值.21.(本题8分)已知二次函数的图象以为顶点,且过点.(1)求该二次函数的解析式;(2)求该二次函数图象与坐标轴的交点坐标;22.(本题8分)在长为,宽为的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.23.(本题8分)我们知道:对于任何实数,①∵≥0,∴+1>0;②∵≥0,∴+>0.模仿上述方法解答:求证:(1)对于任何实数,均有:>0;(2)不论为何实数,多项式的值总大于的值.24.(本题9分)如图,二次函数的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知
7、一次函数的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的关系式;(2)根据图象,写出满足≥的x的取值范围.25.(本题9分)百货商店服装柜在销售中发现:某童装每天可卖20件,每件盈利40元.为迎接“六一”儿童节,商场决定采取适当降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:每件童装降价1元,每天可多卖2件.要想平均每天获利1200元,那么每件童装应降价多少元?26.(本题10分)已知关于的一元二次方程有两个实数根和.(1)求实数的取值范围;(2)当时,求的值.27.(本题12分)来(本题满分12分,每小题满分各4分)
8、已知平面直角坐标系xOy(如图1),一
此文档下载收益归作者所有