欢迎来到天天文库
浏览记录
ID:50470195
大小:154.01 KB
页数:5页
时间:2020-03-09
《导数基础部参变分离变更主元.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、导数基础部分离变量:例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数,(1)若在区间上为“凸函数”,求m的取值范围;(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值.解:由函数得(1)在区间上为“凸函数”,则在区间[0,3]上恒成立解法一:从二次函数的区间最值入手:等价于解法二:分离变量法:∵当时,恒成立,当时,恒成立等价于的最大值()恒成立,而()是增函数,则(2)∵当时在区间上都为“凸函数”则等价于当时恒成立再等价于在恒成立(视为关于m的一次函数最值问题)-2
2、2变更主元法:例2:设函数(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)若对任意的不等式恒成立,求a的取值范围.解:(Ⅰ)3aaa3a令得的单调递增区间为(a,3a)令得的单调递减区间为(-,a)和(3a,+)∴当x=a时,极小值=当x=3a时,极大值=b.(Ⅱ)由
3、
4、≤a,得:对任意的恒成立①则等价于这个二次函数的对称轴(放缩法)即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。上是增函数.(9分)∴于是,对任意,不等式①恒成立,等价于又∴点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系例3:已知函数图象上一点处的切
5、线斜率为,(Ⅰ)求的值;(Ⅱ)当时,求的值域;(Ⅲ)当时,不等式恒成立,求实数t的取值范围。解:(Ⅰ)∴,解得(Ⅱ)由(Ⅰ)知,在上单调递增,在上单调递减,在上单调递减又∴的值域是(Ⅲ)令思路1:要使恒成立,只需,即分离变量思路2:二次函数区间最值
此文档下载收益归作者所有