小学6年级全册数学知识点汇总第19讲:排列组合(教师版).docx

小学6年级全册数学知识点汇总第19讲:排列组合(教师版).docx

ID:50423544

大小:1015.59 KB

页数:25页

时间:2020-03-05

小学6年级全册数学知识点汇总第19讲:排列组合(教师版).docx_第1页
小学6年级全册数学知识点汇总第19讲:排列组合(教师版).docx_第2页
小学6年级全册数学知识点汇总第19讲:排列组合(教师版).docx_第3页
小学6年级全册数学知识点汇总第19讲:排列组合(教师版).docx_第4页
小学6年级全册数学知识点汇总第19讲:排列组合(教师版).docx_第5页
资源描述:

《小学6年级全册数学知识点汇总第19讲:排列组合(教师版).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第十九讲排列组合一、排列问题在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从个不同的元素中取出()个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列.根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它

2、们也是不同的排列.排列的基本问题是计算排列的总个数.从个不同的元素中取出()个元素的所有排列的个数,叫做从个不同的元素的排列中取出个元素的排列数,我们把它记做.根据排列的定义,做一个元素的排列由个步骤完成:步骤:从个不同的元素中任取一个元素排在第一位,有种方法;步骤:从剩下的()个元素中任取一个元素排在第二位,有()种方法;……步骤:从剩下的个元素中任取一个元素排在第个位置,有(种)方法;由乘法原理,从个不同元素中取出个元素的排列数是,即,这里,,且等号右边从开始,后面每个因数比前一个因数小,共

3、有个因数相乘.一、排列数一般地,对于的情况,排列数公式变为.表示从个不同元素中取个元素排成一列所构成排列的排列数.这种个排列全部取出的排列,叫做个不同元素的全排列.式子右边是从开始,后面每一个因数比前一个因数小,一直乘到的乘积,记为,读做的阶乘,则还可以写为:,其中.在排列问题中,有时候会要求某些物体或元素必须相邻;求某些物体必须相邻的方法数量,可以将这些物体当作一个整体捆绑在一起进行计算.二、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项

4、活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.一般地,从个不同元素中取出个()元素组成一组不计较组内各元素的次序,叫做从个不同元素中取出个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从个不同元素中取出个元素()的所有组合的个数,叫做从个不同元素中取出个不同元素的组合数.记作.一般地,

5、求从个不同元素中取出的个元素的排列数可分成以下两步:第一步:从个不同元素中取出个元素组成一组,共有种方法;  第二步:将每一个组合中的个元素进行全排列,共有种排法.根据乘法原理,得到.因此,组合数.这个公式就是组合数公式.一、组合数的重要性质一般地,组合数有下面的重要性质:()这个公式的直观意义是:表示从个元素中取出个元素组成一组的所有分组方法.表示从个元素中取出()个元素组成一组的所有分组方法.显然,从个元素中选出个元素的分组方法恰是从个元素中选个元素剩下的()个元素的分组方法.例如,从人中选

6、人开会的方法和从人中选出人不去开会的方法是一样多的,即.规定,.二、插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①所要分解的物体一般是相同的:②所要分解的物体必须全部分完:③参与分物体的组至少都分到1个物体,不能有没分到物体的组出现.在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法.三、使用插板法一般有如下三种类型:⑴个人分个东西,要求每个人至少有一个.这个时候我们只需要把所有的

7、东西排成一排,在其中的个空隙中放上个插板,所以分法的数目为.⑴个人分个东西,要求每个人至少有个.这个时候,我们先发给每个人个,还剩下个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数目为.⑵个人分个东西,允许有人没有分到.这个时候,我们不妨先借来个东西,每个人多发1个,这样就和类型⑴一样了,不过这时候物品总数变成了个,因此分法的数目为.1.使学生正确理解排列、组合的意义;正确区分排列、组合问题;2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合;

8、3.掌握排列组合的计算公式以及组合数与排列数之间的关系;4.会、分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等。5.根据不同题目灵活运用计数方法进行计数。例1:小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。