欢迎来到天天文库
浏览记录
ID:50149410
大小:1006.98 KB
页数:27页
时间:2020-03-05
《小学6年级全册数学知识点汇总第16讲:特殊图形(教师版).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第十六讲特殊图形一、长方体和正方体如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.①在六个面中,两个对面是全等的,即三组对面两两全等.(叠放在一起能够完全重合的两个图形称为全等图形.)②长方体的表面积和体积的计算公式是:长方体的表面积:;长方体的体积:.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为,那么:,.二、圆柱与圆锥立体图形表面积体积圆柱圆锥注:是母线,即从顶点到底面圆上的线段长1.掌握立体图形的特征,能通过分析图形的特征解题。2.灵活应用公式解题。例1:如右图,在一
2、个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【解析】我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:10106600.例2:右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【解析】原正方体的表面积是44696(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部
3、分.总的来看,每一个面都增加了4个边长是1厘米的正方形.从而,它的表面积是:9646120平方厘米.例3:下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为厘米,那么最后得到的立体图形的表面积是多少平方厘米?【解析】我们仍然从3个方向考虑.平行于上下表面的各面面积之和:2228(平方厘米);左右方向、前后方向:22416(平方厘米),1144(平方厘米),41(平方厘米),4(平方厘米),这个立体图形
4、的表面积为:41(平方厘米).例4:一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【解析】锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数2增加的面数.原正方体表面积:1166(平方米),一共锯了(21)(31)(41)6次,6112618(平方米).例5:如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?【解析】当小积木互相重合的面最多时表面积最小.设想27块边长为1的正方形积木,当拼
5、成一个的正方体时,表面积最小,现在要去掉2块小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54.例6:要把12件同样的长a、宽b、高h的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?⑴当b2h时,如何打包?⑵当b2h时,如何打包?⑶当b2h时,如何打包?【解析】图2和图3正面的面积相同,侧面面积正面周长长方体长,所以正面的周长愈大表面积越大,图2的正面周长是8h6b,图3的周长是12h4b.两者的周长之差为2(b2h).当b2h时,图2和图3周长相等,
6、可随意打包;当b2h时,按图2打包;当b2h时,按图3打包.(分A/B/C易、中、难三档,每档题目数量根据课程难度自行搭配,总共不少于15道题。题后附答案,“答案”二字加粗)A1.在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【解析】对于和长方体相关的立体图形表面积,一般从上下、左右、前后3个方向考虑.变化前后的表面积不变:5050615000(平方厘米).2.一个表面积为的长方体如图切成27个小长方体,这27个小长方体表面积的和是.【解析】每一刀增加两个切面,
7、增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为.3.要把6件同样的长17、宽7、高3的长方体物品拼装成一件大的长方体,表面积最小是多少?【解析】考虑所有的包装方法,因为6123,所以一共有两种拼接方式:第一种按长宽高116拼接,重叠面有三种选择,共3种包装方法.第二种按长宽高123拼接,有3个长方体并列方向的重叠面有三种选择,有2个长方体并列方向的重叠面剩下2种选择,一共有6种包装方法.其中表面积最小的包装方法如图所示,表面积为1034.4.如图,在一个棱长为5分米的正方体上
8、放一个棱长为4分米的小正方体,求这个立体图形的表面积.【解析】我们把上面的小正方体想象成是可以向下“压缩”的,“压缩”后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面.这样这个立体图形的表面积就可以分成这样两部分:上下方向:大正
此文档下载收益归作者所有