欢迎来到天天文库
浏览记录
ID:50420238
大小:460.00 KB
页数:7页
时间:2020-03-05
《高三数学综合练习系列4.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高三数学综合练习系列(四)姓名:_________一、选择题:本大题共12小题,每小题5分,共60分。1.的()A.必要非充分条件B.充分非必要条件C.充分必要条件D.既非充分又非必要条件2.等差数列中,,则此数列的前13项和为()A.13 B.52 C.26 D.1563.若的值域为,则的值域为()A.B.C.D.以上都不对4.如果且,那么以下不等式正确的个数是()①②③④⑤A.2B.3C.4D.55.函数的图象大致为()6.等比数列的首项,前项和为,已知,则等于()A.B.C.2D.7.集合M={x
2、1解集是P,若PM,则实数m的取值范围()A.[
3、-,5]B.[-3,-]C.[-3,5]D.[-3,-]∪(-,5)8.已知是上的减函数,那么的取值范围是()A.B.C.D.9.把函数的图象沿向量的方向平移后,所得的图象关于y轴对称,则m的最小值是()A.B.C.D.10.已知,点C在∠AOB内,且∠AOC=45°,设,则等于()A.B.C.D.211.已知设数列满足,则数列的前项和等于()A.B.C.D.12.平面直角坐标系中,为坐标原点,已知两点(2,-1),(-1,3),若点满足其中0≤≤1,且,则点轨迹方程为()A.(-1≤≤2)B.(-1≤≤2)C.D.二、填空题:本大题共6小题,每小题5分,共30分,把答案填在横
4、线上.13.是奇函数,当时,,当时,表达式为_________;14.设且则使恒成立的的取值范围是_____________;15.已知则__________;16.在R上定义运算△:x△y=x(1-y)若不等式(x-a)△(x+a)<1,对任意实数x恒成立,则实数a的取值范围是;17.已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则边BC上的中线AD的长为;563蓄水量时间O618.水池有两个相同的进水口和一个出水口,每个口进出水速度如图甲、乙所示,某天O点到6点该水池的蓄水量如图丙所示(至少打开一个水口):1进水量时间O1O1出水量时间2甲乙丙给出以下3
5、个论断:①O点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水也不出水.则一定正确的论断是.三、解答题:本大题共小题,共60分.解答应写出文字说明,证明过程或演算步骤.19.(本小题满分12分)已知函数,求:(1)函数的定义域和值域;(2)写出函数的单调递增区间。 20.(本小题满分12分)已知函数,点P是图象上的任意一点,P关于原点的对称点Q的轨迹是函数的图象。(1)求的解析式(2)当时,解不等式2(3)当时,恒成立,求的范围.21.(本小题满分12分)设函数定义域为A,集合,(1)A=R,求m的取值范围。(2),求m的取值范围。(3)在B上恒成立,求m的取值
6、范围。22.(本小题满分12分)设函数,(1)当时,解关于的不等式;(2)记,若在上有最大值,求的取值范围。23.(本小题满分12分)已知定义在R上的单调函数,当<0时,>1,且对任意的实数,∈R,有=,(1)求,并写出适合条件的函数的一个解析式;(2)数列满足,①求通项公式的表达式;②令试比较的大小,并加以证明;③当a>1时,不等式对于不小于2的正整数恒成立,求的取值范围。高三数学综合练习系列(四)参考答案一、选择题:题号123456789101112答案ACCBADACCCAA二、填空题:本大题共6小题,每小题5分,共30分,把答案填在横线上.13.;14.;15.;16.
7、;17.;18.①;三、解答题:本大题共小题,共60分.解答应写出文字说明,证明过程或演算步骤.19.解:…………………………2分…………………………4分(Ⅰ)函数的定义域…………………………6分函数的值域为…………………………8分(Ⅱ)令得∴函数的单调递增区间是………………12分20.解:(1)……………………………………2分(2)由2,得……………………………………3分又,所以…………………………5分解得……………………………………6分故原不等式的解集为…………………………7分(3)=……………8分令……………………………………9分易证函数在区间上单调递增,(证明)又,∴函
8、数在区间上递增…………………………10分∴函数在区间上的最小值为==0…11分若要恒成立,只需在区间上的最小值0,即所求m的范围是……………………………………12分21.解:(1)…………………………4分(2)在集合上有解,在集合上有解…………………………8分(3)在集合上恒成立,在集合上恒成立。…………………………12分22.解:(1)当时(2)综上可得当时在上有最大值。23.解:(1)令y=0得f(x)[1-f(0)]=0,则f(0)=1……………………………………2分适合题意的f(x)
此文档下载收益归作者所有