欢迎来到天天文库
浏览记录
ID:50357901
大小:255.00 KB
页数:4页
时间:2020-03-08
《线性规划均值MicrosoftWord文档.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二元一次不等式组与简单的线性规划问题【知识网络】1、二元一次不等式组以及可化成二元一次不等式组的不等式的解法;2、作二元一次不等式组表示的平面区域,会求最值;3、线性规划的实际问题和其中的整点问题。(1):(1)已知点P(x0,y0)和点A(1,2)在直线的异侧,则()A.B.0C.D.(2)满足的整点的点(x,y)的个数是()A.5B.8C.12D.13(3)不等式(x-2y+1)(x+y-3)≤0表示的平面区域是()(4)设实数x,y满足,则的最大值为.(5)已知,求的取值范围.(6):试求由不等式y≤2及
2、x
3、≤y≤
4、x
5、+1所表示的平面区域的面积大小.4(7):已知函数f(x)和g(x
6、)的图象关于原点对称,且f(x)=x2+2x.(Ⅰ)求函数g(x)的解析式;(Ⅱ)若h(x)=g(x)-f(x)+1在[-1,1]上是增函数,求实数的取值范围。(8).已知3≤x≤6,x≤y≤2x,求x+y的最大值和最小值.基本不等式的证明1:(1)设,已知命题;命题,则是成立的()A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件(2)若为△ABC的三条边,且,则()A.B.C.D.(3)设x>0,y>0,,,a与b的大小关系()A.a>bB.a0)则盐水就变咸了,试根据这一事实提炼一个不等式.
7、(5)设.4(6):已知a,b都是正数,并且a¹b,求证:a5+b5>a2b3+a3b2(7).设,当时,求证:。(8):(1)已知是正常数,,,求证:,指出等号成立的条件;(2)利用(1)的结论求函数()的最小值,指出取最小值时的值.9.设x、y是正实数,且x+y=5,则lgx+lgy的最大值是_______________________.10.若a,b均为大于1的正数,且ab=100,则lga·lgb的最大值是()A.0B.1C.2D.411.在三个结论:①,②③,其中正确的个数是 ()A.0B.1C.2D.312.对一切正整数,不等式恒成立,则B的范围是()13.已知
8、方程的三根可作为一个三角形的三边长,那么m的取值范围是。4
此文档下载收益归作者所有