杨驭教学设计(教案).doc

杨驭教学设计(教案).doc

ID:50331218

大小:675.00 KB

页数:8页

时间:2020-03-08

杨驭教学设计(教案).doc_第1页
杨驭教学设计(教案).doc_第2页
杨驭教学设计(教案).doc_第3页
杨驭教学设计(教案).doc_第4页
杨驭教学设计(教案).doc_第5页
资源描述:

《杨驭教学设计(教案).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、教学设计(教案)模板基本信息学科数学年级2014建工一班教学形式新授课教师杨驭单位蚌埠建设学校课题名称3.2函数的性质学情分析(1)用学生熟悉的主题活动将所学的知识有机的整合在一起;(2)引导学生去感知数学的数形结合思想.通过图形认识特征,由此定义性质,再利用图形(或定义)进行性质的判断;(3)在问题的思考、交流、解决中培养和发展学生的思维能力.教学目标知识目标:⑴理解函数的单调性与奇偶性的概念;⑵会借助于函数图像讨论函数的单调性;⑶理解具有奇偶性的函数的图像特征,会判断简单函数的奇偶性.能力目标:⑴通过利用函数图像研究函数性质,培

2、养学生的观察能力;⑵通过函数奇偶性的判断,培养学生的数据处理能力.情感目标:经历函数性质的探究过程,感受数学的简洁美,养成良好的思维习惯。教学过程*揭示课题3.2函数的性质.*创设情景兴趣导入问题1观察某城市某天的气温时段图,此图反映了0时至14时的气温(C)随时间(h)变化的情况.回答下面的问题:(1)时,气温最低,最低气温为C,时气温最高,最高气温为°C.(2)随着时间的增加,在时间段0时到6时的时间段内,气温不断地;6时到14时这个时间段内,气温不断地.问题2下图为股市中,某股票在半天内的行情,请描述此股票的涨幅情况.从上图可

3、以看到,有些时候该股票的价格随着时间推移在上涨,即时间增加股票价格也增加;有时该股票的价格随着时间推移在下跌,即时间增加股票价格反而减小.归纳类似地,函数值随着自变量的增大而增大(或减小)的性质就是函数的单调性.*动脑思考探索新知概念函数值随着自变量的增大而增大(或减小)的性质叫做函数的单调性.类型设函数在区间内有意义.(1)如图(1)所示,在区间内,随着自变量的增加,函数值不断增大,图像呈上升趋势.即对于任意的,当时,都有成立.这时把函数叫做区间内的增函数,区间叫做函数的增区间.(2)如图(2)所示,在区间内,随着自变量的增加,函

4、数值不断减小,图像呈下降趋势.即对于任意的,当时,都有成立.这时函数叫做区间内的减函数,区间叫做函数的减区间.图(1)图(2)如果函数在区间内是增函数(或减函数),那么,就称函数在区间内具有单调性,区间叫做函数的单调区间.几何特征函数单调性的几何特征:在自变量取值区间上,顺着x轴的正方向,若函数的图像上升,则函数为增函数;若图像下降则函数为减函数.判定方法判定函数的单调性有两种方法:借助于函数的图像或根据单调性的定义来判定.*巩固知识典型例题例1小明从家里出发,去学校取书,顺路将自行车送还王伟同学.小明骑了30分钟自行车,到王伟家送

5、还自行车后,又步行10分钟到学校取书,最后乘公交车经过20分钟回到家.这段时间内,小明离开家的距离与时间的关系如下图所示.请指出这个函数的单调性.分析 对于用图像法表示的函数,可以通过对函数图像的观察来判断函数的单调性,从而得到单调区间.解 由图像可以看出,函数的增区间为;减区间为.例2判断函数的单调性.分析对于用解析式表示的函数,其单调性可以通过定义来判断,也可以作出函数的图像,通过观察图像来判断.无论采用哪种方法,都要首先确定函数的定义域.解法1函数为一次函数,定义域为,其图像为一条直线.确定图像上的两个点即可作出函数图像.列表

6、如下:x01-22在直角坐标系中,描出点(0,-2),(1,2),作出经过这两个点的直线.观察图像知函数在内为增函数.*理论升华整体建构由一次函数()的图像(如下图)可知:xyxy(1)当时,图像从左至右上升,函数是单调递增函数;(2)当时,图像从左至右下降,函数是单调递减函数.由反比例函数的图像(如下图)可知:(1)当时,在各象限中值分别随值的增大而减小,函数是单调递减函数;(2)当时,在各象限中值分别随值的增大而增大,函数是单调递增函数.*运用知识强化练习教材练习3.2.11.已知函数图像如下图所示.(1)根据图像说出函数的单调

7、区间以及函数在各单调区间内的单调性.(2)写出函数的定义域和值域.*创设情景兴趣导入问题P1P3P2平面几何中,曾经学习了关于轴对称图形和中心对称图形的知识.如图所示,点关于轴的对称点是沿着x轴对折得到与相重合的点,其坐标为;点关于轴的对称点是沿着轴对折得到与相重合的点,其坐标为;点关于原点的对称点是线段绕着原点旋转180°得到与相重合的点,其坐标为.*动脑思考探索新知一般地,设点为平面上的任意一点,则(1)点关于x轴的对称点的坐标为;(2)点关于轴的对称点的坐标为;(3)点关于原点的对称点的坐标为.*巩固知识典型例题例3 (1)已

8、知点,写出点关于x轴的对称点的坐标;(2)已知点,写出点关于轴对称点的坐标与关于原点的对称点的坐标;(3)设函数,在函数图像上任取一点,写出点关于轴的对称点的坐标与关于原点的对称点的坐标.分析 本题需要利用三种对称点的坐标特征来进行研

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。