数学分析课件 高斯公式与斯托克斯公式.ppt

数学分析课件 高斯公式与斯托克斯公式.ppt

ID:50293542

大小:1.21 MB

页数:29页

时间:2020-03-12

数学分析课件 高斯公式与斯托克斯公式.ppt_第1页
数学分析课件 高斯公式与斯托克斯公式.ppt_第2页
数学分析课件 高斯公式与斯托克斯公式.ppt_第3页
数学分析课件 高斯公式与斯托克斯公式.ppt_第4页
数学分析课件 高斯公式与斯托克斯公式.ppt_第5页
资源描述:

《数学分析课件 高斯公式与斯托克斯公式.ppt》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、§3高斯公式与斯托克斯公式高斯公式与斯托克斯公式都是格林公式的推广.格林公式建立了平面区域上的二重积分与其边界曲线上的第二型曲线积分之间的关系;高斯公式建立了空间区域上的三重积分与其边界曲面上的第二型曲面积分之间的关系;斯托克斯公式建立了空间曲面上的第二型曲面积分与其边界曲线上的第二型曲线积分之间的关系.返回一、高斯公式二、斯托克斯公式一、高斯公式定理22.3设空间区域由分片光滑的双侧封闭曲面S围成.若函数P,Q,R在上连续,且有一阶连续偏导数,则其中S取外侧.(1)式称为高斯公式.证下面只证读者可类似这些结果相加便得到高斯公式(1).先设V是一个xy型区域,即其边界

2、曲面S由曲面证明其余两式:及垂直于的柱面组成(图22-7),其中于是按三重积分的计算方法,有其中都取上侧.又由于平面上投影面从而得到对于不是xy型区域的情形,一般可用有限个光滑积为零,所以曲面将它分割成若干个xy型区域来讨论.例1计算其中S是边长为a的正立方体表面并取外侧.解应用高斯公式,注若在高斯公式中则有于是得到应用第二型曲面积分计算空间区域V的体积的公式:例2计算其中为曲面上的部分,并取上侧.解由于曲面不是封闭的,不能直接应用高斯公式.为了能使用高斯公式以方便计算,可补充一块平面并取下侧,则构成一封闭曲面.于是而因此例3证明电学中的高斯定理:在由点电荷所产生的静

3、电场中,电场强度向外穿过任何包含在其内部的光滑封闭曲面的电通量都等于证以为球心作一半径充分小的球面使全部落在所包含的区域内部,并将坐标原点取在处.由电学知识,在点处的电场强度为设其中易验证(参见图22-8)所以穿过的电通量为其中取外侧,是包围的半径为的球体.在与所围的空间区域上应用高斯公式,其边界的外测是的外侧和的内侧.因为所以穿过的电通量为二、斯托克斯公式先对双侧曲面S的侧与其边界曲线L的方向作如下规定:设有人站在S上指定的一侧,若沿L行走,指定的侧总在人的左方,则人前进的方向为边界线L的正向;若沿L行走,指定的侧总在人的右方,则人前进的方向为边界线L的负向.这个规

4、定也称为右手法则,如图22-9所示.定理22.4设光滑曲面S的边界L是按段光滑的连续曲线.若函数P,Q,R在S(连同L)上连续,且有一阶连续偏导数,则有斯托克斯公式如下:其中S的侧与L的方向按右手法则确定.证先证其中曲面S由方程确定,它的正侧法线方(3)若S在xy平面上的投影为区域平面上的投影为曲线现由第二型曲线积分定义及格林公式有向数为方向余弦为所以所以因为由于从而将(3),(4),(5)三式相加,即得公式(2).如果S不能以的形式给出,则可用一些光滑曲线把S分割为若干小块,使每一小块能用这综合上述结果,便得到所要证明的(3)式.当曲面S表示为时,同样可证为了便于记

5、忆,斯托克斯公式也常写成如下形式:例4计算其中种形式来表示.因而这时(2)式也能成立.与各坐标面的交线,取图22-8所示的方向.解应用斯托克斯公式推得:车胎状的环形区域则是非单连通的.与平面曲线积分相仿,空间曲线积分与路线的无关性也有下面相应的定理.不经过V以外的点而连续收缩于属于V的一点.例如:两同心球面所界定的区域仍是单连通的;而形如区域V称为单连通的,如果V内任一封闭曲线皆可注上述之单连通,又称为“按曲面单连通”.其意义是:对于V内任一封闭曲线L,均能以L为边界,绷起一个位于V中的曲面.与路线无关;(i)对于内任一按段光滑的封闭曲线L有(ii)对于内任一按段光滑

6、的封闭曲线L,曲线积分定理22.5设为空间单连通区域.若函数P,个条件是等价的:Q,R在上连续,且有一阶连续偏导数,则以下四例5验证曲线积分与路线无关,并求被积表达式的原函数这个定理的证明与定理21.12相仿,这里不重复了.在内处处成立.(iii)内某一函数u的全微分,即取如图22-11,从沿平行于x轴的直线到所以曲线积分与路线无关.现在求原函数:解对于显然有再沿平行于y轴的直线到最后沿平行于z轴的直线到于是为原点,则得若取为任意点,则为一任意常数.其中是一个常数.若取

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。