欢迎来到天天文库
浏览记录
ID:50095299
大小:78.75 KB
页数:3页
时间:2020-03-04
《《勾股定理》做课稿.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《勾股定理》做课稿曹雪晴【教学目标】:知识与技能:知道勾股定理的由来,理解和掌握勾股定理的证明方法。能够灵活地运用勾股定理及其计算。过程与方法:让学生经历“观察-猜想-归纳-验证”的数学过程,并从中体会数形结合及从特殊到一般的数学思想。培养学生观察、比较、分析、推理的能力。情感态度与价值观:介绍我国古代在研究勾股定理方面取得的伟大成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感在探索问题的过程中,培养学生的合作交流意识和探索精神。教学重点:是勾股定理的发现、验证和应用。难点:是用拼图方法、面积法证明勾股定理教
2、学过程一、预习检测1、直角△ABC的主要性质是:∠C=90°(用几何语言表示)(1)两锐角之间的关系:(2)若D为斜边中点,则斜边中线(3)若∠B=30°,则∠B的对边和斜边:2、勾股定理证明:方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。S正方形=_______________=____________________方法二;已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。求证:a2+b2=c2。分析:左右两边的正方形边长相等,则两个正方形的面积相等。左边S=____________
3、__右边S=_______________左边和右边面积相等,即化简可得。二、合作交流:(1)观察图1-1。 A的面积是__________个单位面积; B的面积是__________个单位面积; C的面积是__________个单位面积。3(图中每个小方格代表一个单位面积)(2)你能发现图1-1中三个正方形A,B,C的面积之间有什么关系吗?图1-2中的呢?由此我们可以得出什么结论?可猜想:如果直角三角形的两直角边分别为a、b,斜边为c,那么________________________________________
4、_______________________________________________。(三)释疑解惑1.在Rt△ABC中,,(1)如果a=3,b=4,则c=________;(2)如果a=6,b=8,则c=________;第4题图S1S2S3(3)如果a=5,b=12,则c=________;(4)如果a=15,b=20,则c=________.2、下列说法正确的是( )A.若、、是△ABC的三边,则B.若、、是Rt△ABC的三边,则C.若、、是Rt△ABC的三边,,则D.若、、是Rt△ABC的三边,,则3、一个直角三
5、角形中,两直角边长分别为3和4,下列说法正确的是()A.斜边长为25B.三角形周长为25C.斜边长为5D.三角形面积为204、如图,三个正方形中的两个的面积S1=25,S2=144,则另一个的面积S3为________.5、一个直角三角形的两边长分别为5cm和12cm,则第三边的长为。(四)达标检测1.在Rt△ABC中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则SRt△ABC
6、=________。2、一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为。五总结归纳1、本节课你有哪些收获?2、还有哪些疑问?33
此文档下载收益归作者所有