欢迎来到天天文库
浏览记录
ID:49951360
大小:540.50 KB
页数:23页
时间:2020-03-05
《二次函数的实际应用利润问题.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、利润问题一.几个量之间的关系.2.利润、售价、进价的关系:利润=售价-进价1.总价、单价、数量的关系:总价=单价×数量3.总利润、单件利润、数量的关系:总利润=单件利润×数量二.在商品销售中,采用哪些方法增加利润?例1.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如果调整价格 ,每涨价1元,每星期要少卖出10件。要想获得6000元的利润,该商品应定价为多少元?列表分析1:总售价-总进价=总利润总售价=单件售价×数量总进价=单件进价×数量利润6000设每件涨价x元,则每件售价为(60+x)元(60+x)(300-10x)40(30
2、0-10x)总利润=单件利润×数量列表分析2:总利润=单件利润×数量利润6000(60-40+x)(300-10x)请继续完成.例2.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格 ,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?分析与思考:在这个问题中,总利润是不是一个变量?如果是,它随着哪个量的改变而改变?若设每件加价x元,总利润为y元。你能列出函数关系式吗?解:设每件加价为x元时获得的总利润为y元.y=(60-40+x)(300-10x)=(20+x)(300-10x)=-10x2+
3、100x+6000=-10(x2-50x-600)=-10[(x-25)2-625-600]=-10(x-25)2+12250(04、-x)(300+18x)=(20-x)(300+18x)=-18x2+60x+6000答:综合以上两种情况,定价为85元可获得最大利润为12250元.(元)定价325631060:=-习题.某商店购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个,据销售经验,售价每提高1元,销售量相应减少10个。(1)假设销售单价提高x元,那么销售每个篮球所获得的利润是_______元,这种篮球每月的销售量是______个(用X的代数式表示)(2)8000元是否为每月销售篮球的最大利润?如果是,说明理由,如果不是,请求出最大利润,此时篮球的售价应定为多少元?小5、结1.正确理解利润问题中几个量之间的关系2.当利润的值时已知的常数时,问题通过方程来解;当利润为变量时,问题通过函数关系来求解.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?来到商场请大家带着以下几个问题读题(1)题目中有几种调整价格的方法?(2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出186、件,已知商品的进价为每件40元,如何定价才能使利润最大?来到商场分析:调整价格包括涨价和降价两种情况先来看涨价的情况:⑴设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星期少卖件,实际卖出件,销额为元,买进商品需付元因此,所得利润为元10x(300-10x)(60+x)(300-10x)40(300-10x)y=(60+x)(300-10x)-40(300-10x)即(0≤X≤30)(0≤X≤30)可以看出,这个函数的图像是一条抛物线的一部分,这条抛物线的顶点是函数图像的最高点,也就是说当x取顶点坐标的横坐标时,这个函7、数有最大值。由公式可以求出顶点的横坐标.所以,当定价为65元时,利润最大,最大利润为6250元在降价的情况下,最大利润是多少?请你参考(1)的过程得出答案。解:设降价x元时利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买进商品需付40(300-10x)元,因此,得利润答:定价为元时,利润最大,最大利润为6050元做一做由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?(0≤x≤20)某商场销售某种品牌的纯牛奶,已知进价为每箱40元,市场调查发现:若每箱以50元销售,平
4、-x)(300+18x)=(20-x)(300+18x)=-18x2+60x+6000答:综合以上两种情况,定价为85元可获得最大利润为12250元.(元)定价325631060:=-习题.某商店购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个,据销售经验,售价每提高1元,销售量相应减少10个。(1)假设销售单价提高x元,那么销售每个篮球所获得的利润是_______元,这种篮球每月的销售量是______个(用X的代数式表示)(2)8000元是否为每月销售篮球的最大利润?如果是,说明理由,如果不是,请求出最大利润,此时篮球的售价应定为多少元?小
5、结1.正确理解利润问题中几个量之间的关系2.当利润的值时已知的常数时,问题通过方程来解;当利润为变量时,问题通过函数关系来求解.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?来到商场请大家带着以下几个问题读题(1)题目中有几种调整价格的方法?(2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18
6、件,已知商品的进价为每件40元,如何定价才能使利润最大?来到商场分析:调整价格包括涨价和降价两种情况先来看涨价的情况:⑴设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星期少卖件,实际卖出件,销额为元,买进商品需付元因此,所得利润为元10x(300-10x)(60+x)(300-10x)40(300-10x)y=(60+x)(300-10x)-40(300-10x)即(0≤X≤30)(0≤X≤30)可以看出,这个函数的图像是一条抛物线的一部分,这条抛物线的顶点是函数图像的最高点,也就是说当x取顶点坐标的横坐标时,这个函
7、数有最大值。由公式可以求出顶点的横坐标.所以,当定价为65元时,利润最大,最大利润为6250元在降价的情况下,最大利润是多少?请你参考(1)的过程得出答案。解:设降价x元时利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买进商品需付40(300-10x)元,因此,得利润答:定价为元时,利润最大,最大利润为6050元做一做由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?(0≤x≤20)某商场销售某种品牌的纯牛奶,已知进价为每箱40元,市场调查发现:若每箱以50元销售,平
此文档下载收益归作者所有