资源描述:
《浙江省中考数学复习题方法技巧专题八面积训练新版浙教版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、方法技巧专题(八) 面积训练【方法解读】1.面积公式:(1)三角形的面积=×底×高=×周长×内切圆的半径;(2)矩形的面积=长×宽;(3)平行四边形的面积=底×高;(4)菱形的面积等于两条对角线长的积的一半;(5)正方形的面积等于边长的平方;(6)梯形的面积=×(上底+下底)×高;(7)圆的面积=πR2;(8)扇形的面积==lR;(9)弓形的面积=扇形的面积±三角形的面积;(10)相似三角形面积的比等于相似比的平方.2.面积的计算技巧:(1)利用“等底等高等积”进行转化;(2)用两种不同的方法分割同一整体;(3)“割补法”;(4)平移变换;(5)旋转变换等.
2、1.[2018·德阳]如图F8-1,将边长为的正方形绕点B逆时针旋转30°,那么图中阴影部分的面积为( )图F8-1A.3B.13C.3-D.3-2.[2018·海南]如图F8-2,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图F8-2的▱KLMN,若中间空白部分四边形OPQR恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为( )图F8-2A.24B.25C.26D.273.[2018·威海]如图F8-3,正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连结AF,E
3、F,图中阴影部分的面积是( )图F8-3A.18+36πB.24+18πC.18+18πD.12+18π4.如图F8-4,正方形ABCD的边长为2,H在CD的延长线上,四边形CEFH也为正方形,则△DBF的面积为( )图F8-4A.4B.C.2D.2135.[2017·乌鲁木齐]如图F8-5,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处.若矩形面积为4且∠AFG=60°,GE=2BG,则折痕EF的长为( )图F8-5A.1B.C.2D.26.[2018·广安]如图F8-6,已知☉O的半径是2,点A
4、,B,C在☉O上,若四边形OABC为菱形,则图中阴影部分的面积为( )图F8-6A.π-2B.π-C.π-2D.π-7.如图F8-7,点C在线段AB上,若△CDB和△ADE分别是边长为2和3的等边三角形,则△ABE的面积是 . 图F8-7138.[2018·河南]如图F8-8,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B'C',其中点B的运动路径为弧BB',则图中阴影部分的面积为 . 图F8-89.设△ABC的面积为1,如图F8-9①,将边BC,AC分别2等分,BE1,AD1相交于点O,△
5、AOB的面积记为S1;如图F8-9②,将边BC,AC分别3等分,BE1,AD1相交于点O,△AOB的面积记为S2;…,依此类推,则Sn可表示为 .(用含n的代数式表示,其中n为正整数) 图F8-910.[2018·扬州]如图F8-10,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是☉O的切线;(2)若点F是AO的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.图F8-101311.如图F8-11,
6、在▱ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上一点,点F是边CD上一点,将▱ABCD沿EF折叠,得到四边形EFGH,点A的对应点为点H,点D的对应点为点G.(1)当点H与点C重合时,①填空:点E到CD的距离是 ; ②求证:△BCE≌△GCF;③求△CEF的面积.(2)当点H落在射线BC上,且CH=1时,直线EH与直线CD交于点M,请直接写出△MEF的面积.温馨提示:学生可以根据题意,在备用图中补充图形,以便作答.图F8-111313参考答案1.C [解析]由旋转可知∠1=∠4=30°,∴∠2+∠3=60°.∵∠BAM=∠BC'M=90
7、°,且AB=BC',BM=BM,∴Rt△ABM≌Rt△C'BM,∴∠2=∠3=30°.在Rt△ABM中,AB=,∠2=30°,则AM=ABtan30°=1.∴S△ABM=S△BMC'=,∴S阴影=S正方形A'B'C'D'-(S△ABM+S△BMC')=3-.故选C.2.B [解析]设长方形纸片长、宽分别为x,y,正方形纸片边长为z.∵四边形OPQR是正方形,∴RQ=RO,∴x-z=z-y,∴x=2z-y①.∵▱KLMN的面积为50,∴xy+z2+(z-y)2=50,把①代入,得(2z-y)·y+z2+(z-y)2=50,∴2zy-y2+z2+z2-2yz+y
8、2=50.整理,得2z2=50,∴z2=25,∴正方