欢迎来到天天文库
浏览记录
ID:49641015
大小:265.50 KB
页数:8页
时间:2020-03-03
《弹塑性力学复习思考题 (1).doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、研究生弹塑性力学复习思考题1.简答题:(1)什么是主平而、主应力、应力主方向?简述求一点主应力的步骤?(2)什么是八面体及八面体上的剪应力和正应力有何其特点(3)弹性本构关系和報性木构关系的各白主要特点是什么?(4)偏应力第二不变量J2的物理意义是什么?(5)什么是屈服而、屈服函数?Tresca屈服条件和Mises屈服条件的几何与物理意义是什么?(6)什么是Drucker公设?该公设有何作用?(能得出什么推论?)(7)什么是增量理论?什么是全量理论?(8)什么是单一1111线假定?(9)什么是平面应力问题?什么是平血应变问题?在弹性范围内这两类问题Z间有
2、和联系和区别?(1())论述薄板小挠度弯曲理论的基本假定?二、计算题1、Forthefollowingstateofstress,determinetheprincipalstressesanddirectionsandfindthetractionvectoronaplanewithunitnormaln=(0,1,1)/y/2。「31r=1021202、Insuitableunits,thestressataparticularpointinasolidisfoundtobe_21-4~%=140-401Determinethetractionvec
3、toronasurfacewithunitnormal(cos6^,sin0,0),where0isageneralangleintherange0W&S龙。PlotthevariationofthemagnitudeofthetractionvectorTw
4、asafunctionof0,3、利用应变协调条件检杳其应变状态是否存在存在?_BTf./ed2g严_=°dxkdxadxid^jdXjdXmdxidxh(1)£x=4xy2,£y=B5、z4、Thedisplacementsinanelasticmaterialaregivenby2+^k2d2(F丄),—0El^2EI•2EI4whereM,E,I,andIareconstantparameters□Determinethecorrespondingstrainandstressfieldsandshowthatthisproblemrepresentsthepurebendingofarectangularbeaminthex,yplane.5、写出如下问题的边界条件(a)用直角坐标,(b)用极坐标hf7XL///入。qyiy6>E6、xpressallboundaryconditionsforeachoftheproblemsillustratedinthefollowingfigure.V(b)7、Showthatthefollowingstresscomponentssatisfytheequationsofequilibriumwithzerobodyforces,butarenotthesolutiontoaprobleminelasticity:4=4)2+V7、thattheAiryfunction>=—(xv—)4-—v2solvesthefollowingcantilever4c•3c^Jbeamproblem,asshowninthefollowingfigure.Asusualforsuchproblems,boundaryconditionsattheends(x=0andL)shouldbeformulatedonlyintermsoftheresultantforcesystem,whileaty=±ctheexactpointwisespecificationshouldbeused.Fo8、rthecasewithN=0、comparetheelasticitystressfieldwiththecorrespondingresultsfromstrengthofmaterialstheory.ThecantileverbeamshowninthefigureissubjectedtoadistributedshearstressTox/lontheupperface.ThefollowingAirystressfunctionisproposedforthisproblem0=cy2+C2y3+C3j4+C4y5+“t2+c(^y+“Oy9、2+““y3Detenninetheconstantsqandfindthest
5、z4、Thedisplacementsinanelasticmaterialaregivenby2+^k2d2(F丄),—0El^2EI•2EI4whereM,E,I,andIareconstantparameters□Determinethecorrespondingstrainandstressfieldsandshowthatthisproblemrepresentsthepurebendingofarectangularbeaminthex,yplane.5、写出如下问题的边界条件(a)用直角坐标,(b)用极坐标hf7XL///入。qyiy6>E
6、xpressallboundaryconditionsforeachoftheproblemsillustratedinthefollowingfigure.V(b)7、Showthatthefollowingstresscomponentssatisfytheequationsofequilibriumwithzerobodyforces,butarenotthesolutiontoaprobleminelasticity:4=4)2+V7、thattheAiryfunction>=—(xv—)4-—v2solvesthefollowingcantilever4c•3c^Jbeamproblem,asshowninthefollowingfigure.Asusualforsuchproblems,boundaryconditionsattheends(x=0andL)shouldbeformulatedonlyintermsoftheresultantforcesystem,whileaty=±ctheexactpointwisespecificationshouldbeused.Fo8、rthecasewithN=0、comparetheelasticitystressfieldwiththecorrespondingresultsfromstrengthofmaterialstheory.ThecantileverbeamshowninthefigureissubjectedtoadistributedshearstressTox/lontheupperface.ThefollowingAirystressfunctionisproposedforthisproblem0=cy2+C2y3+C3j4+C4y5+“t2+c(^y+“Oy9、2+““y3Detenninetheconstantsqandfindthest
7、thattheAiryfunction>=—(xv—)4-—v2solvesthefollowingcantilever4c•3c^Jbeamproblem,asshowninthefollowingfigure.Asusualforsuchproblems,boundaryconditionsattheends(x=0andL)shouldbeformulatedonlyintermsoftheresultantforcesystem,whileaty=±ctheexactpointwisespecificationshouldbeused.Fo
8、rthecasewithN=0、comparetheelasticitystressfieldwiththecorrespondingresultsfromstrengthofmaterialstheory.ThecantileverbeamshowninthefigureissubjectedtoadistributedshearstressTox/lontheupperface.ThefollowingAirystressfunctionisproposedforthisproblem0=cy2+C2y3+C3j4+C4y5+“t2+c(^y+“Oy
9、2+““y3Detenninetheconstantsqandfindthest
此文档下载收益归作者所有