空间向量的线面关系的判定.ppt

空间向量的线面关系的判定.ppt

ID:49628711

大小:1.41 MB

页数:30页

时间:2020-02-26

空间向量的线面关系的判定.ppt_第1页
空间向量的线面关系的判定.ppt_第2页
空间向量的线面关系的判定.ppt_第3页
空间向量的线面关系的判定.ppt_第4页
空间向量的线面关系的判定.ppt_第5页
资源描述:

《空间向量的线面关系的判定.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、空间线面关系的判定复习回顾:1、非零向量,的充要条件是2、设向量的夹角为,则3、共面向量定理如果两个向量不共线,那么向量与向量共面的充要条件是存在有序实数组,使得:4、直线的方向向量是平面的法向量与的位置关系是平面的法向量不惟一,合理取值即可。思考:我们能不能用直线的方向向量和平面法向量来刻画空间线面位置关系?l1l2l1l2l1l设空间两条直线的方向向量为两个平面的法向量分别为平行垂直OBDCA例1、如图,是平面的一条斜线,为斜足,,为垂足,,且求证:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。(三垂线定理)变式练习:写出三垂线定理的

2、逆定理,并用向量的方法加以证明。三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。三垂线定理的逆定理:在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。OBDCA已知:如图,是平面的一条斜线,为斜足,,为垂足,,且求证:例2、证明:如果一条直线和平面内的两条相交直线垂直,那么这条直线垂直于这个平面。(直线与平面垂直的判定定理)已知:如图,求证:分析:要证明直线与平面垂直,只要证明该直线垂直于平面内任意一条直线。相交不共线又共面存在有序实数组使得,例3、如图,在直三棱柱-中,是棱的中点,求证:证明:在

3、直三棱柱-中,因为,所以因为,而所以,所以在中,因为所以所以因为,,且是棱中点,所以,所以所以:所以:即,思考:还有其它的证明方法吗?利用相似形与线面垂直分析:连结交于点因为所以,要证就是证即证1、利用相似可以证明,从而2、利用知道,即你能试着建立适当的空间直角坐标系,用坐标表示向量,再证明它们互相垂直吗?证明:分别以所在直线为轴,轴,轴,建立空间直角坐标系图中相应点的坐标为:所以:所以:即,三种方法的比较:证法一是几何向量法,要熟练掌握向量的加减运算及所满足的运算律。证法二是向量的坐标运算法,关键是要恰当地建立空间直角坐标系,探求出各点的坐标。证法三是几何向量法和立体几何

4、法的综合运用。最终都是应用向量的数量积为0来证明线线垂直。例4如图,已知矩形和矩形所在平面互相垂直,点分别在对角线上,且求证:ABCDEFxyzMN简证:因为矩形ABCD和矩形ADEF所在平面互相垂直,所以AB,AD,AF互相垂直。以为正交基底,建立如图所示空间坐标系,设AB,AD,AF长分别为3a,3b,3c,则可得各点坐标,从而有又平面CDE的一个法向量是因为MN不在平面CDE内所以MN//平面CDEA1xD1B1ADBCC1yzEFCD中点,求证:D1F例5.在正方体中,E、F分别是BB1,,平面ADE证明:设正方体棱长为1,为单位正交基底,建立如图所示坐标系D-xy

5、z,则可得:所以课堂小结:本节课主要研究了用向量的方法判定空间线线、线面垂直关系。如果要判定两条直线垂直,可以通过证明它们的方向向量,的数量积为0实现谢谢指导

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。